The Elements of Chemistry
Antoine-Laurent Lavoisier
PART ONE: CHAPTERS ONE TO SEVENTEEN
PART TWO| PART THREE
table of contentS
FIRST PAGE
Formation and Decomposition of Aëriform Fluids, of the Combustion of Simple Bodies, and the Formation of Acids
CHAPTER ONE
Of the Combinations of Caloric, and the Formation of Elastic Aëriform Fluids or Gasses
CHAPTER TWO
General Views relative to the Formation and Composition of our Atmosphere
CHAPTER THREE
Analysis of Atmospheric Air, and its Division into two Elastic Fluids;
one fit for Respiration, the other incapable of being respired
CHAPTER FOUR
Nomenclature of the several constituent Parts of Atmospheric Air
CHAPTER FIVE
Decomposition of Oxygen Gas by Sulphur Phosphorus, and Charcoal, and of the Formation of Acids in general
CHAPTER SIX
Of the Nomenclature of Acids in general, and particularly of those drawn from Nitre and Sea Salt
CHAPTER SEVEN
Of the Decomposition of Oxygen Gas
by means of Metals, and the Formation of Metallic Oxyds
CHAPTER EIGHT
Of the Radical Principle of Water, and of its Decomposition by Charcoal and Iron
CHAPTER NINE
Quantities of Caloric disengaged from different Species of Combustion Combustion of Phosphorus
CHAPTER TEN
Of the Combustion of Combustible Substances with each other,
CHAPTER ELEVEN
Observations upon Oxyds and Acids with several Bases,
and upon Composition of Animal and Vegetable Substances
CHAPTER TWELVE
Of the Decomposition of Vegetable and Animal Substances by the Action of Fire
CHAPTER THIRTEEN
Of the Decomposition of Vegetable Oxyds by the Vinous Fermentation
CHAPTER FOURTEEN
Of the Putrefactive Fermentation
CHAPTER FIFTEEN
Of the Acetous Fermentation
CHAPTER SIXTEEN
Of the Formation of Neutral Salts, and of their Bases
CHAPTER SEVENTEEN
Continuation of the Observations upon Salifiable Bases, and the Formation of Neutral Salts
FIRST PAGE
Of the Formation and Decomposition of Aëriform Fluids—of the Combustion of Simple Bodies—and the Formation of Acids.
CHAPTER ONE
Combinations of Caloric, and the Formation of Elastic Aëriform Fluids
That every body, whether solid or fluid, is augmented in all its dimensions by any increase of its sensible heat, was long ago fully established as a physical axiom, or universal proposition, by the celebrated Boerhaave. Such facts as have been adduced for controverting the generality of this principle offer only fallacious results, or, at least, such as are so complicated with foreign circumstances as to mislead the judgment: But, when we separately consider the effects, so as to deduce each from the cause to which they separately belong, it is easy to perceive that the separation of particles by heat is a constant and general law of nature.
When we have heated a solid body to a certain degree, and have thereby caused its particles to separate from each other, if we allow the body to cool, its particles again approach each other in the same proportion in which they were separated by the increased temperature; the body returns through the same degrees of expansion which it before extended through; and, if it be brought back to the same temperature from which we set out at the commencement of the experiment, it recovers exactly the same dimensions which it formerly occupied. But, as we are still very far from being able to arrive at the degree of absolute cold, or deprivation of all heat, being unacquainted with any degree of coldness which we cannot suppose capable of still farther augmentation, it follows, that we are still incapable of causing the ultimate particles of bodies to approach each other as near as is possible; and, consequently, that the particles of all bodies do not touch each other in any state hitherto known, which, tho' a very singular conclusion, is yet impossible to be denied.
It is supposed, that, since the particles of bodies are thus continually impelled by heat to separate from each other, they would have no connection between themselves; and, of consequence, that there could be no solidity in nature, unless they were held together by some other power which tends to unite them, and, so to speak, to chain them together; which power, whatever be its cause, or manner of operation, we name Attraction.
Thus the particles of all bodies may be considered as subjected to the action of two opposite powers, the one repulsive, the other attractive, between which they remain in equilibrio. So long as the attractive force remains stronger, the body must continue in a state of solidity; but if, on the contrary, heat has so far removed these particles from each other, as to place them beyond the sphere of attraction, they lose the adhesion they before had with each other, and the body ceases to be solid.
Water gives us a regular and constant example of these facts; whilst below Zero of the French thermometer, or 32° of Fahrenheit it remains solid, and is called ice. Above that degree of temperature, its particles being no longer held together by reciprocal attraction, it becomes liquid; and, when we raise its temperature above 80°, (212°) its particles, giving way to the repulsion caused by the heat, assume the state of vapour or gas, and the water is changed into an aëriform fluid.
The same may be affirmed of all bodies in nature: They are either solid or liquid, or in the state of elastic aëriform vapour, according to the proportion which takes place between the attractive force inherent in their particles, and the repulsive power of the heat acting upon these; or, what amounts to the same thing, in proportion to the degree of heat to which they are exposed.
It is difficult to comprehend these phenomena, without admitting them as the effects of a real and material substance, or very subtile fluid, which, insinuating itself between the particles of bodies, separates them from each other; and, even allowing the existence of this fluid to be hypothetical, we shall see in the sequel, that it explains the phenomena of nature in a very satisfactory manner.
This substance, whatever it is, being the cause of heat, or, in other words, the sensation which we call warmth being caused by the accumulation of this substance, we cannot, in strict language, distinguish it by the term heat; because the same name would then very improperly express both cause and effect. For this reason, in the memoir which I published in 1777, I gave it the names of igneous fluid and matter of heat. And, since that time, in the work published by Mr de Morveau, Mr Berthollet, Mr de Fourcroy, and myself, upon the reformation of chemical nomenclature, we thought it necessary to banish all periphrastic expressions, which both lengthen physical language, and render it more tedious and less distinct, and which even frequently does not convey sufficiently just ideas of the subject intended. Wherefore, we have distinguished the cause of heat, or that exquisitely elastic fluid which produces it, by the term of caloric. Besides, that this expression fulfils our object in the system which we have adopted, it possesses this farther advantage, that it accords with every species of opinion, since, strictly speaking, we are not obliged to suppose this to be a real substance; it being sufficient, as will more clearly appear in the sequel of this work, that it be considered as the repulsive cause, whatever that may be, which separates the particles of matter from each other; so that we are still at liberty to investigate its effects in an abstract and mathematical manner.
In the present state of our knowledge, we are unable to determine whether light be a modification of caloric, or if caloric be, on the contrary, a modification of light. This, however, is indisputable, that, in a system where only decided facts are admissible, and where we avoid, as far as possible, to suppose any thing to be that is not really known to exist, we ought provisionally to distinguish, by distinct terms, such things as are known to produce different effects. We therefore distinguish light from caloric; though we do not therefore deny that these have certain qualities in common, and that, in certain circumstances, they combine with other bodies almost in the same manner, and produce, in part, the same effects.
What I have already said may suffice to determine the idea affixed to the word caloric; but there remains a more difficult attempt, which is, to give a just conception of the manner in which caloric acts upon other bodies. Since this subtile matter penetrates through the pores of all known substances; since there are no vessels through which it cannot escape, and, consequently, as there are none which are capable of retaining it, we can only come at the knowledge of its properties by effects which are fleeting, and difficultly ascertainable. It is in these things which we neither see nor feel, that it is especially necessary to guard against the extravagancy of our imagination, which forever inclines to step beyond the bounds of truth, and is very difficultly restrained within the narrow line of facts.
We have already seen, that the same body becomes solid, or fluid, or aëriform, according to the quantity of caloric by which it is penetrated; or, to speak more strictly, according as the repulsive force exerted by the caloric is equal to, stronger, or weaker, than the attraction of the particles of the body it acts upon.
But, if these two powers only existed, bodies would become liquid at an indivisible degree of the thermometer, and would almost instantaneously pass from the solid state of aggregation to that of aëriform elasticity. Thus water, for instance, at the very moment when it ceases to be ice, would begin to boil, and would be transformed into an aëriform fluid, having its particles scattered indefinitely through the surrounding space. That this does not happen, must depend upon the action of some third power. The pressure of the atmosphere prevents this separation, and causes the water to remain in the liquid state till it be raised to 80° of temperature (212°) above zero of the French thermometer, the quantity of caloric which it receives in the lowest temperature being insufficient to overcome the pressure of the atmosphere.
Whence it appears that, without this atmospheric pressure, we should not have any permanent liquid, and should only be able to see bodies in that state of existence in the very instant of melting, as the smallest additional caloric would instantly separate their particles, and dissipate them through the surrounding medium. Besides, without this atmospheric pressure, we should not even have any aëriform fluids, strictly speaking, because the moment the force of attraction is overcome by the repulsive power of the caloric, the particles would separate themselves indefinitely, having nothing to give limits to their expansion, unless their own gravity might collect them together, so as to form an atmosphere.
Simple reflection upon the most common experiments is sufficient to evince the truth of these positions. They are more particularly proved by the following experiment, which I published in the Memoirs of the French Academy for 1777, p. 426.
Having filled with sulphuric ether a small narrow glass vessel, A, (Plate VII. Fig. 17.), standing upon its stalk P, the vessel, which is from twelve to fifteen lines diameter, is to be covered by a wet bladder, tied round its neck with several turns of strong thread; for greater security, fix a second bladder over the first. The vessel should be filled in such a manner with the ether, as not to leave the smallest portion of air between the liquor and the bladder. It is now to be placed under the recipient BCD of an air-pump, of which the upper part B ought to be fitted with a leathern lid, through which passes a wire EF, having its point F very sharp; and in the same receiver there ought to be placed the barometer GH. The whole being thus disposed, let the recipient be exhausted, and then, by pushing down the wire EF, we make a hole in the bladder. Immediately the ether begins to boil with great violence, and is changed into an elastic aëriform fluid, which fills the receiver. If the quantity of ether be sufficient to leave a few drops in the phial after the evaporation is finished, the elastic fluid produced will sustain the mercury in the barometer attached to the air-pump, at eight or ten inches in winter, and from twenty to twenty-five in summer. To render this experiment more complete, we may introduce a small thermometer into the phial A, containing the ether, which will descend considerably during the evaporation.
The only effect produced in this experiment is, the taking away the weight of the atmosphere, which, in its ordinary state, presses on the surface of the ether; and the effects resulting from this removal evidently prove, that, in the ordinary temperature of the earth, ether would always exist in an aëriform state, but for the pressure of the atmosphere, and that the passing of the ether from the liquid to the aëriform state is accompanied by a considerable lessening of heat; because, during the evaporation, a part of the caloric, which was before in a free state, or at least in equilibrio in the surrounding bodies, combines with the ether, and causes it to assume the aëriform state.
The same experiment succeeds with all evaporable fluids, such as alkohol, water, and even mercury; with this difference, that the atmosphere formed in the receiver by alkohol only supports the attached barometer about one inch in winter, and about four or five inches in summer; that formed by water, in the same situation, raises the mercury only a few lines, and that by quicksilver but a few fractions of a line. There is therefore less fluid evaporated from alkohol than from ether, less from water than from alkohol, and still less from mercury than from either; consequently there is less caloric employed, and less cold produced, which quadrates exactly with the results of these experiments.
Another species of experiment proves very evidently that the aëriform state is a modification of bodies dependent on the degree of temperature, and on the pressure which these bodies undergo. In a Memoir read by Mr de la Place and me to the Academy in 1777, which has not been printed, we have shown, that, when ether is subjected to a pressure equal to twenty-eight inches of the barometer, or about the medium pressure of the atmosphere, it boils at the temperature of about 32° (104°), or 33° (106.25°), of the thermometer. Mr de Luc, who has made similar experiments with spirit of wine, finds it boils at 67° (182.75°). And all the world knows that water boils at 80° (212°). Now, boiling being only the evaporation of a liquid, or the moment of its passing from the fluid to the aëriform state, it is evident that, if we keep ether continually at the temperature of 33° (106.25°), and under the common pressure of the atmosphere, we shall have it always in an elastic aëriform state; and that the same thing will happen with alkohol when above 67° (182.75°), and with water when above 80° (212°); all which are perfectly conformable to the following experiment.
I filled a large vessel ABCD (Plate VII. Fig. 16.) with water, at 35° (110.75°), or 36° (113°); I suppose the vessel transparent, that we may see what takes place in the experiment; and we can easily hold the hands in water at that temperature without inconvenience. Into it I plunged some narrow necked bottles F, G, which were filled with the water, after which they were turned up, so as to rest on their mouths on the bottom of the vessel. Having next put some ether into a very small matrass, with its neck a b c, twice bent as in the Plate, I plunged this matrass into the water, so as to have its neck inserted into the mouth of one of the bottles F. Immediately upon feeling the effects of the heat communicated to it by the water in the vessel ABCD it began to boil; and the caloric entering into combination with it, changed it into elastic aëriform fluid, with which I filled several bottles successively, F, G, &c.
This is not the place to enter upon the examination of the nature and properties of this aëriform fluid, which is extremely inflammable; but, confining myself to the object at present in view, without anticipating circumstances, which I am not to suppose the reader to know, I shall only observe, that the ether, from this experiment, is almost only capable of existing in the aëriform state in our world; for, if the weight of our atmosphere was only equal to between 20 and 24 inches of the barometer, instead of 28 inches, we should never be able to obtain ether in the liquid state, at least in summer; and the formation of ether would consequently be impossible upon mountains of a moderate degree of elevation, as it would be converted into gas immediately upon being produced, unless we employed recipients of extraordinary strength, together with refrigeration and compression. And, lastly, the temperature of the blood being nearly that at which ether passes from the liquid to the aëriform state, it must evaporate in the primae viae, and consequently it is very probable the medical properties of this fluid depend chiefly upon its mechanical effect.
These experiments succeed better with nitrous ether, because it evaporates in a lower temperature than sulphuric ether. It is more difficult to obtain alkohol in the aëriform state; because, as it requires 67° (182.75°) to reduce it to vapour, the water of the bath must be almost boiling, and consequently it is impossible to plunge the hands into it at that temperature.
It is evident that, if water were used in the foregoing experiment, it would be changed into gas, when exposed to a temperature superior to that at which it boils. Although thoroughly convinced of this, Mr de la Place and myself judged it necessary to
confirm
it by the following direct experiment. We filled a glass jar A, (Plate VII. Fig. 5.) with mercury, and placed it with its mouth downwards in a dish B, likewise filled with mercury, and having introduced about two gross of water into the jar, which rose to the top of the mercury at CD; we then plunged the whole apparatus into an iron boiler EFGH, full of boiling sea-water of the temperature of 85° (123.25°), placed upon the furnace GHIK. Immediately upon the water over the mercury attaining the temperature of 80° (212°), it began to boil; and, instead of only filling the small space ACD, it was converted into an aëriform fluid, which filled the whole jar; the mercury even descended below the surface of that in the dish B; and the jar must have been overturned, if it had not been very thick and heavy, and fixed to the dish by means of iron-wire. Immediately after withdrawing the apparatus from the boiler, the vapour in the jar began to condense, and the mercury rose to its former station; but it returned again to the aëriform state a few seconds after replacing the apparatus in the boiler.
We have thus a certain number of substances, which are convertible into elastic aëriform fluids by degrees of temperature, not much superior to that of our atmosphere. We shall afterwards find that there are several others which undergo the same change in similar circumstances, such as muriatic or marine acid, ammoniac or volatile alkali, the carbonic acid or fixed air, the sulphurous acid, &c. All of these are permanently elastic in or about the mean temperature of the atmosphere, and under its common pressure.
All these facts, which could be easily multiplied if necessary, give me full right to assume, as a general principle, that almost every body in nature is susceptible of three several states of existence, solid, liquid, and aëriform, and that these three states of existence depend upon the quantity of caloric combined with the body. Henceforwards I shall express these elastic aëriform fluids by the generic term gas; and in each species of gas I shall distinguish between the caloric, which in some measure serves the purpose of a solvent, and the substance, which in combination with the caloric, forms the base of the gas.
To these bases of the different gases, which are hitherto but little known, we have been obliged to assign names; these I shall point out in Chap. IV. of this work, when I have previously given an account of the phenomena attendant upon the heating and cooling of bodies, and when I have established precise ideas concerning the composition of our atmosphere.
We have already shown, that the particles of every substance in nature exist in a certain state of equilibrium, between that attraction which tends to unite and keep the particles together, and the effects of the caloric which tends to separate them. Hence the caloric not only surrounds the particles of all bodies on every side, but fills up every interval which the particles of bodies leave between each other. We may form an idea of this, by supposing a vessel filled with small spherical leaden bullets, into which a quantity of fine sand is poured, which, insinuating into the intervals between the bullets, will fill up every void. The balls, in this comparison, are to the sand which surrounds them exactly in the same situation as the particles of bodies are with respect to the caloric; with this difference only, that the balls are supposed to touch each other, whereas the particles of bodies are not in contact, being retained at a small distance from each other, by the caloric.
If, instead of spherical balls, we substitute solid bodies of a hexahedral, octohedral, or any other regular figure, the capacity of the intervals between them will be lessened, and consequently will no longer contain the same quantity of sand. The same thing takes place, with respect to natural bodies; the intervals left between their particles are not of equal capacity, but vary in consequence of the different figures and magnitude of their particles, and of the distance at which these particles are maintained, according to the existing proportion between their inherent attraction, and the repulsive force exerted upon them by the caloric.
In this manner we must understand the following expression, introduced by the English philosophers, who have given us the first precise ideas upon this subject; the capacity of bodies for containing the matter of heat. As comparisons with sensible objects are of great use in assisting us to form distinct notions of abstract ideas, we shall endeavour to illustrate this, by instancing the phenomena which take place between water and bodies which are wetted and penetrated by it, with a few reflections.
If we immerge equal pieces of different kinds of wood, suppose cubes of one foot each, into water, the fluid gradually insinuates itself into their pores, and the pieces of wood are augmented both in weight and magnitude: But each species of wood will imbibe a different quantity of water; the lighter and more porous woods will admit a larger, the compact and closer grained will admit of a lesser quantity; for the proportional quantities of water imbibed by the pieces will depend upon the nature of the constituent particles of the wood, and upon the greater or lesser affinity subsisting between them and water. Very resinous wood, for instance, though it may be at the same time very porous, will admit but little water. We may therefore say, that the different kinds of wood possess different capacities for receiving water; we may even determine, by means of the augmentation of their weights, what quantity of water they have actually absorbed; but, as we are ignorant how much water they contained, previous to immersion, we cannot determine the absolute quantity they contain, after being taken out of the water.
The same circumstances undoubtedly take place, with bodies that are immersed in caloric; taking into consideration, however, that water is an incompressible fluid, whereas caloric is, on the contrary, endowed with very great elasticity; or, in other words, the particles of caloric have a great tendency to separate from each other, when forced by any other power to approach; this difference must of necessity occasion very considerable diversities in the results of experiments made upon these two substances.
Having established these clear and simple propositions, it will be very easy to explain the ideas which ought to be affixed to the following expressions, which are by no means synonimous, but possess each a strict and determinate meaning, as in the following definitions:
Free caloric, is that which is not combined in any manner with any other body. But, as we live in a system to which caloric has a very strong adhesion, it follows that we are never able to obtain it in the state of absolute freedom.
Combined caloric, is that which is fixed in bodies by affinity or elective attraction, so as to form part of the substance of the body, even part of its solidity.
By the expression specific caloric of bodies, we understand the respective quantities of caloric requisite for raising a number of bodies of the same weight to an equal degree of temperature. This proportional quantity of caloric depends upon the distance between the constituent particles of bodies, and their greater or lesser degrees of cohesion; and this distance, or rather the space or void resulting from it, is, as I have already observed, called the capacity of bodies for containing caloric.
Heat, considered as a sensation, or, in other words, sensible heat, is only the effect produced upon our sentient organs, by the motion or passage of caloric, disengaged from the surrounding bodies. In general, we receive impressions only in consequence of motion, and we might establish it as an axiom, That, without motion, there is no sensation. This general principle applies very accurately to the sensations of heat and cold: When we touch a cold body, the caloric which always tends to become in equilibrio in all bodies, passes from our hand into the body we touch, which gives us the feeling or sensation of cold. The direct contrary happens, when we touch a warm body, the caloric then passing from the body into our hand, produces the sensation of heat. If the hand and the body touched be of the same temperature, or very nearly so, we receive no impression, either of heat or cold, because there is no motion or passage of caloric; and thus no sensation can take place, without some correspondent motion to occasion it.
When the thermometer rises, it shows, that free caloric is entering into the surrounding bodies: The thermometer, which is one of these, receives its share in proportion to its mass, and to the capacity which it possesses for containing caloric. The change therefore which takes place upon the thermometer, only announces a change of place of the caloric in those bodies, of which the thermometer forms one part; it only indicates the portion of caloric received, without being a measure of the whole quantity disengaged, displaced, or absorbed.
The most simple and most exact method for determining this latter point, is that described by Mr de la Place, in the Memoirs of the Academy, No. 1780, p. 364; a summary explanation of which will be found towards the conclusion of this work. This method consists in placing a body, or a combination of bodies, from which caloric is disengaging, in the midst of a hollow sphere of ice; and the quantity of ice melted becomes an exact measure of the quantity of caloric disengaged. It is possible, by means of the apparatus which we have caused to be constructed upon this plan, to determine, not as has been pretended, the capacity of bodies for containing heat, but the ratio of the increase or diminution of capacity produced by determinate degrees of temperature. It is easy with the same apparatus, by means of divers combinations of experiments, to determine the quantity of caloric requisite for converting solid substances into liquids, and liquids into elastic aëriform fluids; and, vice versa, what quantity of caloric escapes from elastic vapours in changing to liquids, and what quantity escapes from liquids during their conversion into solids. Perhaps, when experiments have been made with sufficient accuracy, we may one day be able to determine the proportional quantity of caloric, necessary for producing the several species of gasses. I shall hereafter, in a separate chapter, give an account of the principal results of such experiments as have been made upon this head.
It remains, before finishing this article, to say a few words relative to the cause of the elasticity of gasses, and of fluids in the state of vapour. It is by no means difficult to perceive that this elasticity depends upon that of caloric, which seems to be the most eminently elastic body in nature. Nothing is more readily conceived, than that one body should become elastic by entering into combination with another body possessed of that quality. We must allow that this is only an explanation of elasticity, by an assumption of elasticity, and that we thus only remove the difficulty one step farther, and that the nature of elasticity, and the reason for caloric being elastic, remains still unexplained. Elasticity in the abstract is nothing more than that quality of the particles of bodies by which they recede from each other when forced together. This tendency in the particles of caloric to separate, takes place even at considerable distances. We shall be satisfied of this, when we consider that air is susceptible of undergoing great compression, which supposes that its particles were previously very distant from each other; for the power of approaching together certainly supposes a previous distance, at least equal to the degree of approach. Consequently, those particles of the air, which are already considerably distant from each other, tend to separate still farther. In fact, if we produce Boyle's vacuum in a large receiver, the very last portion of air which remains spreads itself uniformly through the whole capacity of the vessel, however large, fills it completely throughout, and presses every where against its sides: We cannot, however, explain this effect, without supposing that the particles make an effort to separate themselves on every side, and we are quite ignorant at what distance, or what degree of rarefaction, this effort ceases to act.
Here, therefore, exists a true repulsion between the particles of elastic fluids; at least, circumstances take place exactly as if such a repulsion actually existed; and we have very good right to conclude, that the particles of caloric mutually repel each other. When we are once permitted to suppose this repelling force, the rationale of the formation of gasses, or aëriform fluids, becomes perfectly simple; tho' we must, at the same time, allow, that it is extremely difficult to form an accurate conception of this repulsive force acting upon very minute particles placed at great distances from each other.
It is, perhaps, more natural to suppose, that the particles of caloric have a stronger mutual attraction than those of any other substance, and that these latter particles are forced asunder in consequence of this superior attraction between the particles of the caloric, which forces them between the particles of other bodies, that they may be able to reunite with each other. We have somewhat analogous to this idea in the phenomena which occur when a dry sponge is dipt into water: The sponge swells; its particles separate from each other; and all its intervals are filled up by the water. It is evident, that the sponge, in the act of swelling, has acquired a greater capacity for containing water than it had when dry. But we cannot certainly maintain, that the introduction of water between the particles of the sponge has endowed them with a repulsive power, which tends to separate them from each other; on the contrary, the whole phenomena are produced by means of attractive powers; and these are, first, The gravity of the water, and the power which it exerts on every side, in common with all other fluids; 2dly, The force of attraction which takes place between the particles of the water, causing them to unite together; 3dly, The mutual attraction of the particles of the sponge with each other; and, lastly, The reciprocal attraction which exists between the particles of the sponge and those of the water. It is easy to understand, that the explanation of this fact depends upon properly appreciating the intensity of, and connection between, these several powers. It is probable, that the separation of the particles of bodies, occasioned by caloric, depends in a similar manner upon a certain combination of different attractive powers, which, in conformity with the imperfection of our knowledge, we endeavour to express by saying, that caloric communicates a power of repulsion to the particles of bodies.
FOOTNOTES
2 Whenever the degree of heat occurs in this work, it is stated by the author according to Reaumur's scale. The degrees within brackets are the correspondent degrees of Fahrenheit's scale, added by the translator. E.
3 Collections of the French Academy of Sciences for that year, p. 420.
5 As I shall afterwards give a definition, and explain the properties of the liquor called ether, I shall only premise here, that it is a very volatile inflammable liquor, having a considerably smaller specific gravity than water, or even spirit of wine.—A.
6 It would have been more satisfactory if the Author had specified the degrees of the thermometer at which these heights of the mercury in the barometer are produced.
7 Vide Memoirs of the French Academy, anno 1780, p. 335.—A.
CHAPTER two
General Views relative to the Formation and Composition of our Atmosphere
These views which I have taken of the formation of elastic aëriform fluids or gasses, throw great light upon the original formation of the atmospheres of the planets, and particularly that of our earth. We readily conceive, that it must necessarily consist of a mixture of the following substances: First, Of all bodies that are susceptible of evaporation, or, more strictly speaking, which are capable of retaining the state of aëriform elasticity in the temperature of our atmosphere, and under a pressure equal to that of a column of twenty-eight inches of quicksilver in the barometer; and, secondly, Of all substances, whether liquid or solid, which are capable of being dissolved by this mixture of different gasses.
The better to determine our ideas relating to this subject, which has not hitherto been sufficiently considered, let us, for a moment, conceive what change would take place in the various substances which compose our earth, if its temperature were suddenly altered. If, for instance, we were suddenly transported into the region of the planet Mercury, where probably the common temperature is much superior to that of boiling water, the water of the earth, and all the other fluids which are susceptible of the gasseous state, at a temperature near to that of boiling water, even quicksilver itself, would become rarified; and all these substances would be changed into permanent aëriform fluids or gasses, which would become part of the new atmosphere. These new species of airs or gasses would mix with those already existing, and certain reciprocal decompositions and new combinations would take place, until such time as all the elective attractions or affinities subsisting amongst all these new and old gasseous substances had operated fully; after which, the elementary principles composing these gasses, being saturated, would remain at rest. We must attend to this, however, that, even in the above hypothetical situation, certain bounds would occur to the evaporation of these substances, produced by that very evaporation itself; for as, in proportion to the increase of elastic fluids, the pressure of the atmosphere would be augmented, as every degree of pressure tends, in some measure, to prevent evaporation, and as even the most evaporable fluids can resist the operation of a very high temperature without evaporating, if prevented by a proportionally stronger compression, water and all other liquids being able to sustain a red heat in Papin's digester; we must admit, that the new atmosphere would at last arrive at such a degree of weight, that the water which had not hitherto evaporated would cease to boil, and, of consequence, would remain liquid; so that, even upon this supposition, as in all others of the same nature, the increasing gravity of the atmosphere would find certain limits which it could not exceed. We might even extend these reflections greatly farther, and examine what change might be produced in such situations upon stones, salts, and the greater part of the fusible substances which compose the mass of our earth. These would be softened, fused, and changed into fluids, &c.: But these speculations carry me from my object, to which I hasten to return.
By a contrary supposition to the one we have been forming, if the earth were suddenly transported into a very cold region, the water which at present composes our seas, rivers, and springs, and probably the greater number of the fluids we are acquainted with, would be converted into solid mountains and hard rocks, at first diaphanous and homogeneous, like rock crystal, but which, in time, becoming mixed with foreign and heterogeneous substances, would become opake stones of various colours. In this case, the air, or at least some part of the aëriform fluids which now compose the mass of our atmosphere, would doubtless lose its elasticity for want of a sufficient temperature to retain them in that state: They would return to the liquid state of existence, and new liquids would be formed, of whose properties we cannot, at present, form the most distant idea.
These two opposite suppositions give a distinct proof of the following corollaries: First, That solidity, liquidity, and aëriform elasticity, are only three different states of existence of the same matter, or three particular modifications which almost all substances are susceptible of assuming successively, and which solely depend upon the degree of temperature to which they are exposed; or, in other words, upon the quantity of caloric with which they are penetrated. 2dly, That it is extremely probable that air is a fluid naturally existing in a state of vapour; or, as we may better express it, that our atmosphere is a compound of all the fluids which are susceptible of the vaporous or permanently elastic state, in the usual temperature, and under the common pressure. 3dly, That it is not impossible we may discover, in our atmosphere, certain substances naturally very compact, even metals themselves; as a metallic substance, for instance, only a little more volatile than mercury, might exist in that situation.
Amongst the fluids with which we are acquainted, some, as water and alkohol, are susceptible of mixing with each other in all proportions; whereas others, on the contrary, as quicksilver, water, and oil, can only form a momentary union; and, after being mixed together, separate and arrange themselves according to their specific gravities. The same thing ought to, or at least may, take place in the atmosphere. It is possible, and even extremely probable, that, both at the first creation, and every day, gasses are formed, which are difficultly miscible with atmospheric air, and are continually separating from it. If these gasses be specifically lighter than the general atmospheric mass, they must, of course, gather in the higher regions, and form strata that float upon the common air. The phenomena which accompany igneous meteors induce me to believe, that there exists in the upper parts of our atmosphere a stratum of inflammable fluid in contact with those strata of air which produce the phenomena of the aurora borealis and other fiery meteors.—I mean hereafter to pursue this subject in a separate treatise.
FOOTNOTES
8 The degree of pressure which they undergo must be taken into account. E.
CHAPTER THREE
Analysis of Atmospheric Air, and its Division into two Elastic Fluids; the one fit for Respiration, the other incapable of being respired
From what has been premised, it follows, that our atmosphere is composed of a mixture of every substance capable of retaining the gasseous or aëriform state in the common temperature, and under the usual pressure which it experiences. These fluids constitute a mass, in some measure homogeneous, extending from the surface of the earth to the greatest height hitherto attained, of which the density continually decreases in the inverse ratio of the superincumbent weight. But, as I have before observed, it is possible that this first stratum is surmounted by several others consisting of very different fluids.
Our business, in this place, is to endeavour to determine, by experiments, the nature of the elastic fluids which compose the inferior stratum of air which we inhabit. Modern chemistry has made great advances in this research; and it will appear by the following details that the analysis of atmospherical air has been more rigorously determined than that of any other substance of the class. Chemistry affords two general methods of determining the constituent principles of bodies, the method of analysis, and that of synthesis. When, for instance, by combining water with alkohol, we form the species of liquor called, in commercial language, brandy or spirit of wine, we certainly have a right to conclude, that brandy, or spirit of wine, is composed of alkohol combined with water. We can produce the same result by the analytical method; and in general it ought to be considered as a principle in chemical science, never to rest satisfied without both these species of proofs.
We have this advantage in the analysis of atmospherical air, being able both to decompound it, and to form it a new in the most satisfactory manner. I shall, however, at present confine myself to recount such experiments as are most conclusive upon this head; and I may consider most of these as my own, having either first invented them, or having repeated those of others, with the intention of analysing atmospherical air, in perfectly new points of view.
I took a matrass (A, fig. 14. plate II.) of about 36 cubical inches capacity, having a long neck B C D E, of six or seven lines internal diameter, and having bent the neck as in Plate IV. Fig. 2. so as to allow of its being placed in the furnace M M N N, in such a manner that the extremity of its neck E might be inserted under a bell-glass F G, placed in a trough of quicksilver R R S S; I introduced four ounces of pure mercury into the matrass, and, by means of a syphon, exhausted the air in the receiver F G, so as to raise the quicksilver to L L, and I carefully marked the height at which it stood by pasting on a slip of paper. Having accurately noted the height of the thermometer and barometer, I lighted a fire in the furnace M M N N, which I kept up almost continually during twelve days, so as to keep the quicksilver always almost at its boiling point. Nothing remarkable took place during the first day: The Mercury, though not boiling, was continually evaporating, and covered the interior surface of the vessels with small drops, at first very minute, which gradually augmenting to a sufficient size, fell back into the mass at the bottom of the vessel. On the second day, small red particles began to appear on the surface of the mercury, which, during the four or five following days, gradually increased in size and number; after which they ceased to increase in either respect. At the end of twelve days, seeing that the calcination of the mercury did not at all increase, I extinguished the fire, and allowed the vessels to cool. The bulk of air in the body and neck of the matrass, and in the bell-glass, reduced to a medium of 28 inches of the barometer and 10° (54.5°) of the thermometer, at the commencement of the experiment was about 50 cubical inches. At the end of the experiment the remaining air, reduced to the same medium pressure and temperature, was only between 42 and 43 cubical inches; consequently it had lost about 1/6 of its bulk. Afterwards, having collected all the red particles, formed during the experiment, from the running mercury in which they floated, I found these to amount to 45 grains.
I was obliged to repeat this experiment several times, as it is difficult in one experiment both to preserve the whole air upon which we operate, and to collect the whole of the red particles, or calx of mercury, which is formed during the calcination. It will often happen in the sequel, that I shall, in this manner, give in one detail the results of two or three experiments of the same nature.
The air which remained after the calcination of the mercury in this experiment, and which was reduced to 5/6 of its former bulk, was no longer fit either for respiration or for combustion; animals being introduced into it were suffocated in a few seconds, and when a taper was plunged into it, it was extinguished as if it had been immersed into water.
In the next place, I took the 45 grains of red matter formed during this experiment, which I put into a small glass retort, having a proper apparatus for receiving such liquid, or gasseous product, as might be extracted: Having applied a fire to the retort in a furnace, I observed that, in proportion as the red matter became heated, the intensity of its colour augmented. When the retort was almost red hot, the red matter began gradually to decrease in bulk, and in a few minutes after it disappeared altogether; at the same time 41-1/2 grains of running mercury were collected in the recipient, and 7 or 8 cubical inches of elastic fluid, greatly more capable of supporting both respiration and combustion than atmospherical air, were collected in the bell-glass.
A part of this air being put into a glass tube of about an inch diameter, showed the following properties: A taper burned in it with a dazzling splendour, and charcoal, instead of consuming quietly as it does in common air, burnt with a flame, attended with a decrepitating noise, like phosphorus, and threw out such a brilliant light that the eyes could hardly endure it. This species of air was discovered almost at the same time by Mr Priestley, Mr Scheele, and myself. Mr Priestley gave it the name of dephlogisticated air, Mr Scheele called it empyreal air. At first I named it highly respirable air, to which has since been substituted the term of vital air. We shall presently see what we ought to think of these denominations.
In reflecting upon the circumstances of this experiment, we readily perceive, that the mercury, during its calcination, absorbs the salubrious and respirable part of the air, or, to speak more strictly, the base of this respirable part; that the remaining air is a species of mephitis, incapable of supporting combustion or respiration; and consequently that atmospheric air is composed of two elastic fluids of different and opposite qualities. As a proof of this important truth, if we recombine these two elastic fluids, which we have separately obtained in the above experiment, viz. the 42 cubical inches of mephitis, with the 8 cubical inches of respirable air, we reproduce an air precisely similar to that of the atmosphere, and possessing nearly the same power of supporting combustion and respiration, and of contributing to the calcination of metals.
Although this experiment furnishes us with a very simple means of obtaining the two principal elastic fluids which compose our atmosphere, separate from each other, yet it does not give us an exact idea of the proportion in which these two enter into its composition: For the attraction of mercury to the respirable part of the air, or rather to its base, is not sufficiently strong to overcome all the circumstances which oppose this union. These obstacles are the mutual adhesion of the two constituent parts of the atmosphere for each other, and the elective attraction which unites the base of vital air with caloric; in consequence of these, when the calcination ends, or is at least carried as far as is possible, in a determinate quantity of atmospheric air, there still remains a portion of respirable air united to the mephitis, which the mercury cannot separate. I shall afterwards show, that, at least in our climate, the atmospheric air is composed of respirable and mephitic airs, in the proportion of 27 and 73; and I shall then discuss the causes of the uncertainty which still exists with respect to the exactness of that proportion.
Since, during the calcination of mercury, air is decomposed, and the base of its respirable part is fixed and combined with the mercury, it follows, from the principles already established, that caloric and light must be disengaged during the process: But the two following causes prevent us from being sensible of this taking place: As the calcination lasts during several days, the disengagement of caloric and light, spread out in a considerable space of time, becomes extremely small for each particular moment of that time, so as not to be perceptible; and, in the next place, the operation being carried on by means of fire in a furnace, the heat produced by the calcination itself becomes confounded with that proceeding from the furnace. I might add the respirable part of the air, or rather its base, in entering into combination with the mercury, does not part with all the caloric which it contained, but still retains a part of it after forming the new compound; but the discussion of this point, and its proofs from experiment, do not belong to this part of our subject.
It is, however, easy to render this disengagement of caloric and light evident to the senses, by causing the decomposition of air to take place in a more rapid manner. And for this purpose, iron is excellently adapted, as it possesses a much stronger affinity for the base of respirable air than mercury. The elegant experiment of Mr Ingenhouz, upon the combustion of iron, is well known. Take a piece of fine iron wire, twisted into a spiral, (BC, Plate IV. Fig. 17.) fix one of its extremities B into the cork A, adapted to the neck of the bottle DEFG, and fix to the other extremity of the wire C, a small morsel of tinder. Matters being thus prepared, fill the bottle DEFG with air deprived of its mephitic part; then light the tinder, and introduce it quickly with the wire upon which it is fixed, into the bottle which you stop up with the cork A, as is shown in the figure (17 Plate IV.) The instant the tinder comes into contact with the vital air it begins to burn with great intensity; and, communicating the inflammation to the iron-wire, it too takes fire, and burns rapidly, throwing out brilliant sparks, which fall to the bottom of the vessel in rounded globules, which become black in cooling, but retain a degree of metallic splendour. The iron thus burnt is more brittle even than glass, and is easily reduced into powder, and is still attractable by the magnet, though not so powerfully as it was before combustion. As Mr Ingenhouz has neither examined the change produced on iron, nor upon the air by this operation, I have repeated the experiment under different circumstances, in an apparatus adapted to answer my particular views, as follows.
Having filled a bell-glass (A, Plate IV. Fig. 3.) of about six pints measure, with pure air, or the highly respirable part of air, I transported this jar by means of a very flat vessel, into a quicksilver bath in the bason BC, and I took care to render the surface of the mercury perfectly dry both within and without the jar with blotting paper. I then provided a small capsule of china-ware D, very flat and open, in which I placed some small pieces of iron, turned spirally, and arranged in such a way as seemed most favourable for the combustion being communicated to every part. To the end of one of these pieces of iron was fixed a small morsel of tinder, to which was added about the sixteenth part of a grain of phosphorus, and, by raising the bell-glass a little, the china capsule, with its contents, were introduced into the pure air. I know that, by this means, some common air must mix with the pure air in the glass; but this, when it is done dexterously, is so very trifling, as not to injure the success of the experiment. This being done, a part of the air is sucked out from the bell-glass, by means of a syphon GHI, so as to raise the mercury within the glass to EF; and, to prevent the mercury from getting into the syphon, a small piece of paper is twisted round its extremity. In sucking out the air, if the motion of the lungs only be used, we cannot make the mercury rise above an inch or an inch and a half; but, by properly using the muscles of the mouth, we can, without difficulty, cause it to rise six or seven inches.
I next took an iron wire, (MN, Plate IV. Fig. 16.) properly bent for the purpose, and making it red hot in the fire, passed it through the mercury into the receiver, and brought it in contact with the small piece of phosphorus attached to the tinder. The phosphorus instantly takes fire, which communicates to the tinder, and from that to the iron. When the pieces have been properly arranged, the whole iron burns, even to the last particle, throwing out a white brilliant light similar to that of Chinese fireworks. The great heat produced by this combustion melts the iron into round globules of different sizes, most of which fall into the China cup; but some are thrown out of it, and swim upon the surface of the mercury. At the beginning of the combustion, there is a slight augmentation in the volume of the air in the bell-glass, from the dilatation caused by the heat; but, presently afterwards, a rapid diminution of the air takes place, and the mercury rises in the glass; insomuch that, when the quantity of iron is sufficient, and the air operated upon is very pure, almost the whole air employed is absorbed.
It is proper to remark in this place, that, unless in making experiments for the purpose of discovery, it is better to be contented with burning a moderate quantity of iron; for, when this experiment is pushed too far, so as to absorb much of the air, the cup D, which floats upon the quicksilver, approaches too near the bottom of the bell-glass; and the great heat produced, which is followed by a very sudden cooling, occasioned by the contact of the cold mercury, is apt to break the glass. In which case, the sudden fall of the column of mercury, which happens the moment the least flaw is produced in the glass, causes such a wave, as throws a great part of the quicksilver from the bason. To avoid this inconvenience, and to ensure success to the experiment, one gross and a half of iron is sufficient to burn in a bell-glass, which holds about eight pints of air. The glass ought likewise to be strong, that it may be able to bear the weight of the column of mercury which it has to support.
By this experiment, it is not possible to determine, at one time, both the additional weight acquired by the iron, and the changes which have taken place in the air. If it is wished to ascertain what additional weight has been gained by the iron, and the proportion between that and the air absorbed, we must carefully mark upon the bell-glass, with a diamond, the height of the mercury, both before and after the experiment (note 9) After this, the syphon (GH, Pl. IV. fig. 3.) guarded, as before, with a bit of paper, to prevent its filling with mercury, is to be introduced under the bell-glass, having the thumb placed upon the extremity, G, of the syphon, to regulate the passage of the air; and by this means the air is gradually admitted, so as to let the mercury fall to its level. This being done, the bell-glass is to be carefully removed, the globules of melted iron contained in the cup, and those which have been scattered about, and swim upon the mercury, are to be accurately collected, and the whole is to be weighed. The iron will be found in that state called martial ethiops by the old chemists, possessing a degree of metallic brilliancy, very friable, and readily reducible into powder, under the hammer, or with a pestle and mortar. If the experiment has succeeded well, from 100 grains of iron will be obtained 135 or 136 grains of ethiops, which is an augmentation of 35 per cent.
If all the attention has been paid to this experiment which it deserves, the air will be found diminished in weight exactly equal to what the iron has gained. Having therefore burnt 100 grains of iron, which has acquired an additional weight of 35 grains, the diminution of air will be found exactly 70 cubical inches; and it will be found, in the sequel, that the weight of vital air is pretty nearly half a grain for each cubical inch; so that, in effect, the augmentation of weight in the one exactly coincides with the loss of it in the other.
I shall observe here, once for all, that, in every experiment of this kind, the pressure and temperature of the air, both before and after the experiment, must be reduced, by calculation, to a common standard of 10° (54.5°) of the thermometer, and 28 inches of the barometer. Towards the end of this work, the manner of performing this very necessary reduction will be found accurately detailed.
If it be required to examine the nature of the air which remains after this experiment, we must operate in a somewhat different manner. After the combustion is finished, and the vessels have cooled, we first take out the cup, and the burnt iron, by introducing the hand through the quicksilver, under the bell-glass; we next introduce some solution of potash, or caustic alkali, or of the sulphuret of potash, or such other substance as is judged proper for examining their action upon the residuum of air. I shall, in the sequel, give an account of these methods of analysing air, when I have explained the nature of these different substances, which are only here in a manner accidentally mentioned. After this examination, so much water must be let into the glass as will displace the quicksilver, and then, by means of a shallow dish placed below the bell-glass, it is to be removed into the common water pneumato-chemical apparatus, where the air remaining may be examined at large, and with great facility.
When very soft and very pure iron has been employed in this experiment, and, if the combustion has been performed in the purest respirable or vital air, free from all admixture of the noxious or mephitic part, the air which remains after the combustion will be found as pure as it was before; but it is difficult to find iron entirely free from a small portion of charry matter, which is chiefly abundant in steel. It is likewise exceedingly difficult to procure the pure air perfectly free from some admixture of mephitis, with which it is almost always contaminated; but this species of noxious air does not, in the smallest degree, disturb the result of the experiment, as it is always found at the end exactly in the same proportion as at the beginning.
I mentioned before, that we have two ways of determining the constituent parts of atmospheric air, the method of analysis, and that by synthesis. The calcination of mercury has furnished us with an example of each of these methods, since, after having robbed the respirable part of its base, by means of the mercury, we have restored it, so as to recompose an air precisely similar to that of the atmosphere. But we can equally accomplish this synthetic composition of atmospheric air, by borrowing the materials of which it is composed from different kingdoms of nature. We shall see hereafter that, when animal substances are dissolved in the nitric acid, a great quantity of gas is disengaged, which extinguishes light, and is unfit for animal respiration, being exactly similar to the noxious or mephitic part of atmospheric air. And, if we take 73 parts, by weight, of this elastic fluid, and mix it with 27 parts of highly respirable air, procured from calcined mercury, we will form an elastic fluid precisely similar to atmospheric air in all its properties.
There are many other methods of separating the respirable from the noxious part of the atmospheric air, which cannot be taken notice of in this part, without anticipating information, which properly belongs to the subsequent chapters. The experiments already adduced may suffice for an elementary treatise; and, in matters of this nature, the choice of our evidences is of far greater consequence than their number.
I shall close this article, by pointing out the property which atmospheric air, and all the known gasses, possess of dissolving water, which is of great consequence to be attended to in all experiments of this nature. Mr Saussure found, by experiment, that a cubical foot of atmospheric air is capable of holding 12 grains of water in solution: Other gasses, as the carbonic acid, appear capable of dissolving a greater quantity; but experiments are still wanting by which to determine their several proportions. This water, held in solution by gasses, gives rise to particular phenomena in many experiments, which require great attention, and which has frequently proved the source of great errors to chemists in determining the results of their experiments.
FOOTNOTES
(9) It will likewise be necessary to take care that the air contained in the glass, both before and after the experiment, be reduced to a common temperature and pressure, otherwise the results of the following calculations will be fallacious.—E.
CHAPTER FOUR
Nomenclature of the several Constituent Parts of Atmospheric Air
Hitherto I have been obliged to make use of circumlocution, to express the nature of the several substances which constitute our atmosphere, having provisionally used the terms of respirable and noxious, or non-respirable parts of the air. But the investigations I mean to undertake require a more direct mode of expression; and, having now endeavoured to give simple and distinct ideas of the different substances which enter into the composition of the atmosphere, I shall henceforth express these ideas by words equally simple.
The temperature of our earth being very near to that at which water becomes solid, and reciprocally changes from solid to fluid, and as this phenomenon takes place frequently under our observation, it has very naturally followed, that, in the languages of at least every climate subjected to any degree of winter, a term has been used for signifying water in the state of solidity, when deprived of its caloric. The same, however, has not been found necessary with respect to water reduced to the state of vapour by an additional dose of caloric; since those persons who do not make a particular study of objects of this kind, are still ignorant that water, when in a temperature only a little above the boiling heat, is changed into an elastic aëriform fluid, susceptible, like all other gasses, of being received and contained in vessels, and preserving its gasseous form so long as it remains at the temperature of 80° (212°), and under a pressure not exceeding 28 inches of the mercurial barometer. As this phenomenon has not been generally observed, no language has used a particular term for expressing water in this state; and the same thing occurs with all fluids, and all substances, which do not evaporate in the common temperature, and under the usual pressure of our atmosphere.
For similar reasons, names have not been given to the liquid or concrete states of most of the aëriform fluids: These were not known to arise from the combination of caloric with certain bases; and, as they had not been seen either in the liquid or solid states, their existence, under these forms, was even unknown to natural philosophers.
We have not pretended to make any alteration upon such terms as are sanctified by ancient custom; and, therefore, continue to use the words water and ice in their common acceptation: We likewise retain the word air, to express that collection of elastic fluids which composes our atmosphere; but we have not thought it necessary to preserve the same respect for modern terms, adopted by latter philosophers, having considered ourselves as at liberty to reject such as appeared liable to occasion erroneous ideas of the substances they are meant to express, and either to substitute new terms, or to employ the old ones, after modifying them in such a manner as to convey more determinate ideas. New words have been drawn, chiefly from the Greek language, in such a manner as to make their etymology convey some idea of what was meant to be represented; and these we have always endeavoured to make short, and of such a nature as to be changeable into adjectives and verbs.
Following these principles, we have, after Mr Macquer's example, retained the term gas, employed by Vanhelmont, having arranged the numerous class of elastic aëriform fluids under that name, excepting only atmospheric air. Gas, therefore, in our nomenclature, becomes a generic term, expressing the fullest degree of saturation in any body with caloric; being, in fact, a term expressive of a mode of existence. To distinguish each species of gas, we employ a second term from the name of the base, which, saturated with caloric, forms each particular gas. Thus, we name water combined to saturation with caloric, so as to form an elastic fluid, aqueous gas; ether, combined in the same manner, etherial gas; the combination of alkohol with caloric, becomes alkoholic gas; and, following the same principles, we have muriatic acid gas, ammoniacal gas, and so on of every substance susceptible of being combined with caloric, in such a manner as to assume the gasseous or elastic aëriform state.
We have already seen, that the atmospheric air is composed of two gasses, or aëriform fluids, one of which is capable, by respiration, of contributing to animal life, and in which metals are calcinable, and combustible bodies may burn; the other, on the contrary, is endowed with directly opposite qualities; it cannot be breathed by animals, neither will it admit of the combustion of inflammable bodies, nor of the calcination of metals. We have given to the base of the former, or respirable portion of the air, the name of oxygen, from οξυς acidum, and γεινομας, gignor; because, in reality, one of the most general properties of this base is to form acids, by combining with many different substances. The union of this base with caloric we term oxygen gas, which is the same with what was formerly called pure, or vital air. The weight of this gas, at the temperature of 10° (54.50), and under a pressure equal to 28 inches of the barometer, is half a grain for each cubical inch, or one ounce and a half to each cubical foot.
The chemical properties of the noxious portion of atmospheric air being hitherto but little known, we have been satisfied to derive the name of its base from its known quality of killing such animals as are forced to breathe it, giving it the name of azote, from the Greek privitive particle α and ξαη, vita; hence the name of the noxious part of atmospheric air is azotic gas; the weight of which, in the same temperature, and under the same pressure, is 1 oz. 2 gros. and 48 grs. to the cubical foot, or 0.4444 of a grain to the cubical inch. We cannot deny that this name appears somewhat extraordinary; but this must be the case with all new terms, which cannot be expected to become familiar until they have been some time in use. We long endeavoured to find a more proper designation without success; it was at first proposed to call it alkaligen gas, as, from the experiments of Mr Berthollet, it appears to enter into the composition of ammoniac, or volatile alkali; but then, we have as yet no proof of its making one of the constituent elements of the other alkalies; beside, it is proved to compose a part of the nitric acid, which gives as good reason to have called it nitrigen. For these reasons, finding it necessary to reject any name upon systematic principles, we have considered that we run no risk of mistake in adopting the terms of azote, and azotic gas, which only express a matter of fact, or that property which it possesses, of depriving such animals as breathe it of their lives.
I should anticipate subjects more properly reserved for the subsequent chapters, were I in this place to enter upon the nomenclature of the several species of gasses: It is sufficient, in this part of the work, to establish the principles upon which their denominations are founded. The principal merit of the nomenclature we have adopted is, that, when once the simple elementary substance is distinguished by an appropriate term, the names of all its compounds derive readily, and necessarily, from this first denomination.
FOOTNOTES
(10) In English, the word steam is exclusively appropriated to water in the state of vapour. E.
CHAPTER FIVE
Decomposition of Oxygen Gas by Sulphur, Phosphorus, and Charcoal—and of the Formation of Acids in general
In performing experiments, it is a necessary principle, which ought never to be deviated from, that they be simplified as much as possible, and that every circumstance capable of rendering their results complicated be carefully removed. Wherefore, in the experiments which form the object of this chapter, we have never employed atmospheric air, which is not a simple substance. It is true, that the azotic gas, which forms a part of its mixture, appears to be merely passive during combustion and calcination; but, besides that it retards these operations very considerably, we are not certain but it may even alter their results in some circumstances; for which reason, I have thought it necessary to remove even this possible cause of doubt, by only making use of pure oxygen gas in the following experiments, which show the effects produced by combustion in that gas; and I shall advert to such differences as take place in the results of these, when the oxygen gas, or pure vital air, is mixed, in different proportions, with azotic gas.
Having filled a bell-glass (A. Pl. iv. fig. 3), of between five and six pints measure, with oxygen gas, I removed it from the water trough, where it was filled, into the quicksilver bath, by means of a shallow glass dish slipped underneath, and having dried the mercury, I introduced 61-1/4 grains of Kunkel's phosphorus in two little China cups, like that represented at D, fig. 3. under the glass A; and that I might set fire to each of the portions of phosphorus separately, and to prevent the one from catching fire from the other, one of the dishes was covered with a piece of flat glass. I next raised the quicksilver in the bell-glass up to E F, by sucking out a sufficient portion of the gas by means of the syphon G H I. After this, by means of the crooked iron wire (fig. 16.), made red hot, I set fire to the two portions of phosphorus successively, first burning that portion which was not covered with the piece of glass. The combustion was extremely rapid, attended with a very brilliant flame, and considerable disengagement of light and heat. In consequence of the great heat induced, the gas was at first much dilated, but soon after the mercury returned to its level, and a considerable absorption of gas took place; at the same time, the whole inside of the glass became covered with white light flakes of concrete phosphoric acid.
At the beginning of the experiment, the quantity of oxygen gas, reduced, as above directed, to a common standard, amounted to 162 cubical inches; and, after the combustion was finished, only 23-1/4 cubical inches, likewise reduced to the standard, remained; so that the quantity of oxygen gas absorbed during the combustion was 138-3/4 cubical inches, equal to 69.375 grains.
A part of the phosphorus remained unconsumed in the bottom of the cups, which being washed on purpose to separate the acid, weighed about 16-1/4 grains; so that about 45 grains of phosphorus had been burned: But, as it is hardly possible to avoid an error of one or two grains, I leave the quantity so far qualified. Hence, as nearly 45 grains of phosphorus had, in this experiment, united with 69.375 grains of oxygen, and as no gravitating matter could have escaped through the glass, we have a right to conclude, that the weight of the substance resulting from the combustion in form of white flakes, must equal that of the phosphorus and oxygen employed, which amounts to 114.375 grains. And we shall presently find, that these flakes consisted entirely of a solid or concrete acid. When we reduce these weights to hundredth parts, it will be found, that 100 parts of phosphorus require 154 parts of oxygen for saturation, and that this combination will produce 254 parts of concrete phosphoric acid, in form of white fleecy flakes.
This experiment proves, in the most convincing manner, that, at a certain degree of temperature, oxygen possesses a stronger elective attraction, or affinity, for phosphorus than for caloric; that, in consequence of this, the phosphorus attracts the base of oxygen gas from the caloric, which, being set free, spreads itself over the surrounding bodies. But, though this experiment be so far perfectly conclusive, it is not sufficiently rigorous, as, in the apparatus described, it is impossible to ascertain the weight of the flakes of concrete acid which are formed; we can therefore only determine this by calculating the weights of oxygen and phosphorus employed; but as, in physics, and in chemistry, it is not allowable to suppose what is capable of being ascertained by direct experiment, I thought it necessary to rep at this experiment, as follows, upon a larger scale, and by means of a different apparatus.
I took a large glass baloon (A. Pl. iv. fig. 4.) with an opening three inches diameter, to which was fitted a crystal stopper ground with emery, and pierced with two holes for the tubes yyy, xxx. Before shutting the baloon with its stopper, I introduced the support BC, surmounted by the china cup D, containing 150 grs. of phosphorus; the stopper was then fitted to the opening of the baloon, luted with fat lute, and covered with slips of linen spread with quick-lime and white of eggs: When the lute was perfectly dry, the weight of the whole apparatus was determined to within a grain, or a grain and a half. I next exhausted the baloon, by means of an air pump applied to the tube xxx, and then introduced oxygen gas by means of the tube yyy, having a stop cock adapted to it. This kind of experiment is most readily and most exactly performed by means of the hydro-pneumatic machine described by Mr Meusnier and me in the Memoirs of the Academy for 1782, pag. 466. and explained in the latter part of this work, with several important additions and corrections since made to it by Mr Meusnier. With this instrument we can readily ascertain, in the most exact manner, both the quantity of oxygen gas introduced into the baloon, and the quantity consumed during the course of the experiment.
When all things were properly disposed, I set fire to the phosphorus with a burning glass. The combustion was extremely rapid, accompanied with a bright flame, and much heat; as the operation went on, large quantities of white flakes attached themselves to the inner surface of the baloon, so that at last it was rendered quite opake. The quantity of these flakes at last became so abundant, that, although fresh oxygen gas was continually supplied, which ought to have supported the combustion, yet the phosphorus was soon extinguished. Having allowed the apparatus to cool completely, I first ascertained the quantity of oxygen gas employed, and weighed the baloon accurately, before it was opened. I next washed, dried, and weighed the small quantity of phosphorus remaining in the cup, on purpose to determine the whole quantity of phosphorus consumed in the experiment; this residuum of the phosphorus was of a yellow ochrey colour. It is evident, that by these several precautions, I could easily determine, 1st, the weight of the phosphorus consumed; 2d, the weight of the flakes produced by the combustion; and, 3d, the weight of the oxygen which had combined with the phosphorus. This experiment gave very nearly the same results with the former, as it proved that the phosphorus, during its combustion, had absorbed a little more than one and a half its weight of oxygen; and I learned with more certainty, that the weight of the new substance, produced in the experiment, exactly equalled the sum of the weights of the phosphorus consumed, and oxygen absorbed, which indeed was easily determinable a priori. If the oxygen gas employed be pure, the residuum after combustion is as pure as the gas employed; this proves that nothing escapes from the phosphorus, capable of altering the purity of the oxygen gas, and that the only action of the phosphorus is to separate the oxygen from the caloric, with which it was before united.
I mentioned above, that when any combustible body is burnt in a hollow sphere of ice, or in an apparatus properly constructed upon that principle, the quantity of ice melted during the combustion is an exact measure of the quantity of caloric disengaged. Upon this head, the memoir given by M. de la Place and me, Aº. 1780, p. 355, may be consulted. Having submitted the combustion of phosphorus to this trial, we found that one pound of phosphorus melted a little more than 100 pounds of ice during its combustion.
The combustion of phosphorus succeeds equally well in atmospheric air as in oxygen gas, with this difference, that the combustion is vastly slower, being retarded by the large proportion of azotic gas mixed with the oxygen gas, and that only about one-fifth part of the air employed is absorbed, because as the oxygen gas only is absorbed, the proportion of the azotic gas becomes so great toward the close of the experiment, as to put an end to the combustion.
I have already shown, that phosphorus is changed by combustion into an extremely light, white, flakey matter; and its properties are entirely altered by this transformation: From being insoluble in water, it becomes not only soluble, but so greedy of moisture, as to attract the humidity of the air with astonishing rapidity; by this means it is converted into a liquid, considerably more dense, and of more specific gravity than water. In the state of phosphorus before combustion, it had scarcely any sensible taste, by its union with oxygen it acquires an extremely sharp and sour taste: in a word, from one of the class of combustible bodies, it is changed into an incombustible substance, and becomes one of those bodies called acids.
This property of a combustible substance to be converted into an acid, by the addition of oxygen, we shall presently find belongs to a great number of bodies: Wherefore, strict logic requires that we should adopt a common term for indicating all these operations which produce analogous results; this is the true way to simplify the study of science, as it would be quite impossible to bear all its specifical details in the memory, if they were not classically arranged. For this reason, we shall distinguish this conversion of phosphorus into an acid, by its union with oxygen, and in general every combination of oxygen with a combustible substance, by the term of oxygenation: from which I shall adopt the verb to oxygenate, and of consequence shall say, that in oxygenating phosphorus we convert it into an acid.
Sulphur is likewise a combustible body, or, in other words, it is a body which possesses the power of decomposing oxygen gas, by attracting the oxygen from the caloric with which it was combined. This can very easily be proved, by means of experiments quite similar to those we have given with phosphorus; but it is necessary to premise, that in these operations with sulphur, the same accuracy of result is not to be expected as with phosphorus; because the acid which is formed by the combustion of sulphur is difficultly condensible, and because sulphur burns with more difficulty, and is soluble in the different gasses. But I can safely assert, from my own experiments, that sulphur in burning absorbs oxygen gas; that the resulting acid is considerably heavier than the sulphur burnt; that its weight is equal to the sum of the weights of the sulphur which has been burnt, and of the oxygen absorbed; and, lastly that this acid is weighty, incombustible, and miscible with water in all proportions: The only uncertainty remaining upon this head, is with regard to the proportions of sulphur and of oxygen which enter into the composition of the acid.
Charcoal, which, from all our present knowledge regarding it, must be considered as a simple combustible body, has likewise the property of decomposing oxygen gas, by absorbing its base from the caloric: But the acid resulting from this combustion does not condense in the common temperature; under the pressure of our atmosphere, it remains in the state of gas, and requires a large proportion of water to combine with or be dissolved in. This acid has, however, all the known properties of other acids, though in a weaker degree, and combines, like them, with all the bases which are susceptible of forming neutral salts.
The combustion of charcoal in oxygen gas, may be effected like that of phosphorus in the bell-glass, (A. Pl. IV. fig. 3.) placed over mercury: but, as the heat of red hot iron is not sufficient to set fire to the charcoal, we must add a small morsel of tinder, with a minute particle of phosphorus, in the same manner as directed in the experiment for the combustion of iron. A detailed account of this experiment will be found in the memoirs of the academy for 1781, p. 448. By that experiment it appears, that 28 parts by weight of charcoal require 72 parts of oxygen for saturation, and that the aëriform acid produced is precisely equal in weight to the sum of the weights of the charcoal and oxygen gas employed. This aëriform acid was called fixed or fixable air by the chemists who first discovered it; they did not then know whether it was air resembling that of the atmosphere, or some other elastic fluid, vitiated and corrupted by combustion; but since it is now ascertained to be an acid, formed like all others by the oxygenation of its peculiar base, it is obvious that the name of fixed air is quite ineligible (note 11).
By burning charcoal in the apparatus mentioned p. 60, Mr de la Place and I found that one lib. of charcoal melted 96 libs. 6 oz. of ice; that, during the combustion, 2 libs. 9 oz. 1 gros. 10 grs. of oxygen were absorbed, and that 3 libs. 9 oz. 1 gros. 10 grs. of acid gas were formed. This gas weighs 0.695 parts of a grain for each cubical inch, in the common standard temperature and pressure mentioned above, so that 34,242 cubical inches of acid gas are produced by the combustion of one pound of charcoal.
I might multiply these experiments, and show by a numerous succession of facts, that all acids are formed by the combustion of certain substances; but I am prevented from doing so in place, by the plan which I have laid down, of proceeding only from facts already ascertained, to such as are unknown, and of drawing my examples only from circumstances already explained. In the mean time, however, the three examples above cited may suffice for giving a clear and accurate conception of the manner in which acids are formed. By these it may be clearly seen, that oxygen is an element common to them all, which constitutes their acidity; and that they differ from each other, according to the nature of the oxygenated or acidified substance. We must therefore, in every acid, carefully distinguish between the acidifiable, base, which Mr de Morveau calls the radical, and the acidifiing principle or oxygen.
FOOTNOTES
(11) It may be proper to remark, though here omitted by the author, that, in conformity with the general principles of the new nomenclature, this acid is by Mr Lavoisier and his coleagues called the carbonic acid, and when in the aëriform state carbonic acid gas. E.
CHAPTER SIX
Of the Nomenclature of Acids in general, and particularly of those drawn from Nitre and Sea-Salt
It becomes extremely easy, from the principles laid down in the preceding chapter, to establish a systematic nomenclature for the acids: The word acid, being used as a generic term, each acid falls to be distinguished in language, as in nature, by the name of its base or radical. Thus, we give the generic name of acids to the products of the combustion or oxygenation of phosphorus, of sulphur, and of charcoal; and these products are respectively named, the phosphoric acid, the sulphuric acid, and the carbonic acid.
There is however, a remarkable circumstance in the oxygenation of combustible bodies, and of a part of such bodies as are convertible into acids, that they are susceptible of different degrees of saturation with oxygen, and that the resulting acids, though formed by the union of the same elements, are possessed of different properties, depending upon that difference of proportion. Of this, the phosphoric acid, and more especially the sulphuric, furnishes us with examples. When sulphur is combined with a small proportion of oxygen, it forms, in this first or lower degree of oxygenation, a volatile acid, having a penetrating odour, and possessed of very particular qualities. By a larger proportion of oxygen, it is changed into a fixed, heavy acid, without any odour, and which, by combination with other bodies, gives products quite different from those furnished by the former. In this instance, the principles of our nomenclature seem to fail; and it seems difficult to derive such terms from the name of the acidifiable base, as shall distinctly express these two degrees of saturation, or oxygenation, without circumlocution. By reflection, however, upon the subject, or perhaps rather from the necessity of the case, we have thought it allowable to express these varieties in the oxygenation of the acids, by simply varying the termination of their specific names. The volatile acid produced from sulphur was anciently known to Stahl under the name of sulphurous acid (note 12). We have preserved that term for this acid from sulphur under-saturated with oxygen; and distinguish the other, or completely saturated or oxygenated acid, by the name of sulphuric acid. We shall therefore say, in this new chemical language, that sulphur, in combining with oxygen, is susceptible of two degrees of saturation; that the first, or lesser degree, constitutes sulphurous acid, which is volatile and penetrating; whilst the second, or higher degree of saturation, produces sulphuric acid, which is fixed and inodorous. We shall adopt this difference of termination for all the acids which assume several degrees of saturation. Hence we have a phosphorous and a phosphoric acid, an acetous and an acetic acid; and so on, for others in similar circumstances.
This part of chemical science would have been extremely simple, and the nomenclature of the acids would not have been at all perplexed, as it is now in the old nomenclature, if the base or radical of each acid had been known when the acid itself was discovered. Thus, for instance, phosphorus being a known substance before the discovery of its acid, this latter was rightly distinguished by a term drawn from the name of its acidifiable base. But when, on the contrary, an acid happened to be discovered before its base, or rather, when the acidifiable base from which it was formed remained unknown, names were adopted for the two, which have not the smallest connection; and thus, not only the memory became burthened with useless appellations, but even the minds of students, nay even of experienced chemists, became filled with false ideas, which time and reflection alone is capable of eradicating. We may give an instance of this confusion with respect to the acid sulphur: The former chemists having procured this acid from the vitriol of iron, gave it the name of the vitriolic acid from the name of the substance which produced it; and they were then ignorant that the acid procured from sulphur by combustion was exactly the same.
The same thing happened with the aëriform acid formerly called fixed air; it not being known that this acid was the result of combining charcoal with oxygen, a variety of denominations have been given to it, not one of which conveys just ideas of its nature or origin. We have found it extremely easy to correct and modify the ancient language with respect to these acids proceeding from known bases, having converted the name of vitriolic acid into that of sulphuric, and the name of fixed air into that of carbonic acid; but it is impossible to follow this plan with the acids whose bases are still unknown; with these we have been obliged to use a contrary plan, and, instead of forming the name of the acid from that of its base, have been forced to denominate the unknown base from the name of the known acid, as happens in the case of the acid which is procured from sea salt.
To disengage this acid from the alkaline base with which it is combined, we have only to pour sulphuric acid upon sea-salt, immediately a brisk effervescence takes place, white vapours arise, of a very penetrating odour, and, by only gently heating the mixture, all the acid is driven off. As, in the common temperature and pressure of our atmosphere, this acid is naturally in the state of gas, we must use particular precautions for retaining it in proper vessels. For small experiments, the most simple and most commodious apparatus consists of a small retort G, (Pl. V. Fig. 5.), into which the sea-salt is introduced, well dried (note 13), we then pour on some concentrated sulphuric acid, and immediately introduce the beak of the retort under little jars or bell-glasses A, (same Plate and Fig.), previously filled with quicksilver. In proportion as the acid gas is disengaged, it passes into the jar, and gets to the top of the quicksilver, which it displaces. When the disengagement of the gas slackens, a gentle heat is applied to the retort, and gradually increased till nothing more passes over. This acid gas has a very strong affinity with water, which absorbs an enormous quantity of it, as is proved by introducing a very thin layer of water into the glass which contains the gas; for, in an instant, the whole acid gas disappears, and combines with the water.
This latter circumstance is taken advantage of in laboratories and manufactures, on purpose to obtain the acid of sea-salt in a liquid form; and for this purpose the apparatus (Pl. IV. Fig. 1.) is employed. It consists, 1st, of a tubulated retort A, into which the sea-salt, and after it the sulphuric acid, are introduced through the opening H; 2d, of the baloon or recipient c, b, intended for containing the small quantity of liquid which passes over during the process; and, 3d, of a set of bottles, with two mouths, L, L, L, L, half filled with water, intended for absorbing the gas disengaged by the distillation. This apparatus will be more amply described in the latter part of this work.
Although we have not yet been able, either to compose or to decompound this acid of sea-salt, we cannot have the smallest doubt that it, like all other acids, is composed by the union of oxygen with an acidifiable base. We have therefore called this unknown substance the muriatic base, or muriatic radical, deriving this name, after the example of Mr Bergman and Mr de Morveau, from the Latin word muria, which was anciently used to signify sea-salt. Thus, without being able exactly to determine the component parts of muriatic acid, we design, by that term, a volatile acid, which retains the form of gas in the common temperature and pressure of our atmosphere, which combines with great facility, and in great quantity, with water, and whose acidifiable base adheres so very intimately with oxygen, that no method has hitherto been devised for separating them. If ever this acidifiable base of the muriatic acid is discovered to be a known substance, though now unknown in that capacity, it will be requisite to change its present denomination for one analogous with that of its base.
In common with sulphuric acid, and several other acids, the muriatic is capable of different degrees of oxygenation; but the excess of oxygen produces quite contrary effects upon it from what the same circumstance produces upon the acid of sulphur. The lower degree of oxygenation converts sulphur into a volatile gasseous acid, which only mixes in small proportions with water, whilst a higher oxygenation forms an acid possessing much stronger acid properties, which is very fixed and cannot remain in the state of gas but in a very high temperature, which has no smell, and which mixes in large proportion with water. With muriatic acid, the direct reverse takes place; an additional saturation with oxygen renders it more volatile, of a more penetrating odour, less miscible with water, and diminishes its acid properties. We were at first inclined to have denominated these two degrees of saturation in the same manner as we had done with the acid of sulphur, calling the less oxygenated muriatous acid, and that which is more saturated with oxygen muriatic acid: But, as this latter gives very particular results in its combinations, and as nothing analogous to it is yet known in chemistry, we have left the name of muriatic acid to the less saturated, and give the latter the more compounded appellation of oxygenated muriatic acid.
Although the base or radical of the acid which is extracted from nitre or saltpetre be better known, we have judged proper only to modify its name in the same manner with that of the muriatic acid. It is drawn from nitre, by the intervention of sulphuric acid, by a process similar to that described for extracting the muriatic acid, and by means of the same apparatus (Pl. IV. Fig. 1.). In proportion as the acid passes over, it is in part condensed in the baloon or recipient, and the rest is absorbed by the water contained in the bottles L,L,L,L; the water becomes first green, then blue, and at last yellow, in proportion to the concentration of the acid. During this operation, a large quantity of oxygen gas, mixed with a small proportion of azotic gas, is disengaged.
This acid, like all others, is composed of oxygen, united to an acidifiable base, and is even the first acid in which the existence of oxygen was well ascertained. Its two constituent elements are but weakly united, and are easily separated, by presenting any substance with which oxygen has a stronger affinity than with the acidifiable base peculiar to this acid. By some experiments of this kind, it was first discovered that azote, or the base of mephitis or azotic gas, constituted its acidifiable base or radical; and consequently that the acid of nitre was really an azotic acid, having azote for its base, combined with oxygen. For these reasons, that we might be consistent with our principles, it appeared necessary, either to call the acid by the name of azotic, or to name the base nitric radical; but from either of these we were dissuaded, by the following considerations. In the first place, it seemed difficult to change the name of nitre or saltpetre, which has been universally adopted in society, in manufactures, and in chemistry; and, on the other hand, azote having been discovered by Mr Berthollet to be the base of volatile alkali, or ammoniac, as well as of this acid, we thought it improper to call it nitric radical. We have therefore continued the term of azote to the base of that part of atmospheric air which is likewise the nitric and ammoniacal radical; and we have named the acid of nitre, in its lower and higher degrees of oxygenation, nitrous acid in the former, and nitric acid in the latter state; thus preserving its former appellation properly modified.
Several very respectable chemists have disapproved of this deference for the old terms, and wished us to have persevered in perfecting a new chemical language, without paying any respect for ancient usage; so that, by thus steering a kind of middle course, we have exposed ourselves to the censures of one sect of chemists, and to the expostulations of the opposite party.
The acid of nitre is susceptible of assuming a great number of separate states, depending upon its degree of oxygenation, or upon the proportions in which azote and oxygen enter into its composition. By a first or lowest degree of oxygenation, it forms a particular species of gas, which we shall continue to name nitrous gas; this is composed nearly of two parts, by weight, of oxygen combined with one part of azote; and in this state it is not miscible with water. In this gas, the azote is by no means saturated with oxygen, but, on the contrary, has still a very great affinity for that element, and even attracts it from atmospheric air, immediately upon getting into contact with it. This combination of nitrous gas with atmospheric air has even become one of the methods for determining the quantity of oxygen contained in air, and consequently for ascertaining its degree of salubrity.
This addition of oxygen converts the nitrous gas into a powerful acid, which has a strong affinity with water, and which is itself susceptible of various additional degrees of oxygenation. When the proportions of oxygen and azote is below three parts, by weight, of the former, to one of the latter, the acid is red coloured, and emits copious fumes. In this state, by the application of a gentle heat, it gives out nitrous gas; and we term it, in this degree of oxygenation, nitrous acid. When four parts, by weight, of oxygen, are combined with one part of azote, the acid is clear and colourless, more fixed in the fire than the nitrous acid, has less odour, and its constituent elements are more firmly united. This species of acid, in conformity with our principles of nomenclature, is called nitric acid.
Thus, nitric acid is the acid of nitre, surcharged with oxygen; nitrous acid is the acid of nitre surcharged with azote; or, what is the same thing, with nitrous gas; and this latter is azote not sufficiently saturated with oxygen to possess the properties of an acid. To this degree of oxygenation, we have afterwards, in the course of this work, given the generical name of oxyd[14].
FOOTNOTES
(12) The term formerly used by the English chemists for this acid was written sulphureous; but we have thought proper to spell it as above, that it may better conform with the similar terminations of nitrous, carbonous, &c. to be used hereafter. In general, we have used the English terminations ic and ous to translate the terms of the Author which end with ique and cux, with hardly any other alterations.—E.
(13) For this purpose, the operation called decrepitation is used, which consists in subjecting it to nearly a red heat, in a proper vessel, so as to evaporate all its water of crystallization.—E.
(14) In strict conformity with the principles of the new nomenclature, but which the Author has given his reasons for deviating from in this instance, the following ought to have been the terms for azote, in its several degrees of oxygenation: Azote, azotic gas, (azote combined with caloric), azotic oxyd gas, nitrous acid, and nitric acid.—E.
CHAPTER SEVEN
Of the Decomposition of Oxygen Gas by means of Metals, and the Formation of Metallic Oxyds
Oxygen has a stronger affinity with metals heated to a certain degree than with caloric; in consequence of which, all metallic bodies, excepting gold, silver, and platina, have the property of decomposing oxygen gas, by attracting its base from the caloric with which it was combined. We have already shown in what manner this decomposition takes place, by means of mercury and iron; having observed, that, in the case of the first, it must be considered as a kind of gradual combustion, whilst, in the latter, the combustion is extremely rapid, and attended with a brilliant flame. The use of the heat employed in these operations is to separate the particles of the metal from each other, and to diminish their attraction of cohesion or aggregation, or, what is the same thing, their mutual attraction for each other.
The absolute weight of metallic substances is augmented in proportion to the quantity of oxygen they absorb; they, at the same time, lose their metallic splendour, and are reduced into an earthy pulverulent matter. In this state metals must not be considered as entirely saturated with oxygen, because their action upon this element is counterbalanced by the power of affinity between it and caloric. During the calcination of metals, the oxygen is therefore acted upon by two separate and opposite powers, that of its attraction for caloric, and that exerted by the metal, and only tends to unite with the latter in consequence of the excess of the latter over the former, which is, in general, very inconsiderable. Wherefore, when metallic substances are oxygenated in atmospheric air, or in oxygen gas, they are not converted into acids like sulphur, phosphorus, and charcoal, but are only changed into intermediate substances, which, though approaching to the nature of salts, have not acquired all the saline properties. The old chemists have affixed the name of calx not only to metals in this state, but to every body which has been long exposed to the action of fire without being melted. They have converted this word calx into a generical term, under which they confound calcareous earth, which, from a neutral salt, which it really was before calcination, has been changed by fire into an earthy alkali, by losing half of its weight, with metals which, by the same means, have joined themselves to a new substance, whose quantity often exceeds half their weight, and by which they have been changed almost into the nature of acids. This mode of classifying substances of so very opposite natures, under the same generic name, would have been quite contrary to our principles of nomenclature, especially as, by retaining the above term for this state of metallic substances, we must have conveyed very false ideas of its nature. We have, therefore, laid aside the expression metallic calx altogether, and have substituted in its place the term oxyd, from the Greek word οξυς.
By this may be seen, that the language we have adopted is both copious and expressive. The first or lowest degree of oxygenation in bodies, converts them into oxyds; a second degree of additional oxygenation constitutes the class of acids, of which the specific names, drawn from their particular bases, terminate in ous, as the nitrous and sulphurous acids; the third degree of oxygenation changes these into the species of acids distinguished by the termination in ic, as the nitric and sulphuric acids; and, lastly, we can express a fourth, or highest degree of oxygenation, by adding the word oxygenated to the name of the acid, as has been already done with the oxygenated muriatic acid.
We have not confined the term oxyd to expressing the combinations of metals with oxygen, but have extended it to signify that first degree of oxygenation in all bodies, which, without converting them into acids, causes them to approach to the nature of salts. Thus, we give the name of oxyd of sulphur to that soft substance into which sulphur is converted by incipient combustion; and we call the yellow matter left by phosphorus, after combustion, by the name of oxyd of phosphorus. In the same manner, nitrous gas, which is azote in its first degree of oxygenation, is the oxyd of azote. We have likewise oxyds in great numbers from the vegetable and animal kingdoms; and I shall show, in the sequel, that this new language throws great light upon all the operations of art and nature.
We have already observed, that almost all the metallic oxyds have peculiar and permanent colours. These vary not only in the different species of metals, but even according to the various degrees of oxygenation in the same metal. Hence we are under the necessity of adding two epithets to each oxyd, one of which indicates the metal oxydated (note 15), while the other indicates the peculiar colour of the oxyd. Thus, we have the black oxyd of iron, the red oxyd of iron, and the yellow oxyd of iron; which expressions respectively answer to the old unmeaning terms of martial ethiops, colcothar, and rust of iron, or ochre. We have likewise the gray, yellow, and red oxyds of lead, which answer to the equally false or insignificant terms, ashes of lead, massicot, and minium.
These denominations sometimes become rather long, especially when we mean to indicate whether the metal has been oxydated in the air, by detonation with nitre, or by means of acids; but then they always convey just and accurate ideas of the corresponding object which we wish to express by their use. All this will be rendered perfectly clear and distinct by means of the tables which are added to this work.
FOOTNOTES
(15) Here we see the word oxyd converted into the verb to oxydate, oxydated, oxydating, after the same manner with the derivation of the verb to oxygenate, oxygenated, oxygenating, from the word oxygen. I am not clear of the absolute necessity of this second verb here first introduced, but think, in a work of this nature, that it is the duty of the translator to neglect every other consideration for the sake of strict fidelity to the ideas of his author.—E.
CHAPTER EIGHT
Of the Radical Principle of Water, and of its Decomposition by Charcoal and Iron
Until very lately, water has always been thought a simple substance, insomuch that the older chemists considered it as an element. Such it undoubtedly was to them, as they were unable to decompose it; or, at least, since the decomposition which took place daily before their eyes was entirely unnoticed. But we mean to prove, that water is by no means a simple or elementary substance. I shall not here pretend to give the history of this recent, and hitherto contested discovery, which is detailed in the Memoirs of the Academy for 1781, but shall only bring forwards the principal proofs of the decomposition and composition of water; and, I may venture to say, that these will be convincing to such as consider them impartially.
First Experiment
Having fixed the glass tube EF, (Pl. vii. fig. 11.) of from 8 to 12 lines diameter, across a furnace, with a small inclination from E to F, lute the superior extremity E to the glass retort A, containing a determinate quantity of distilled water, and to the inferior extremity F, the worm SS fixed into the neck of the doubly tubulated bottle H, which has the bent tube KK adapted to one of its openings, in such a manner as to convey such aëriform fluids or gasses as may be disengaged, during the experiment, into a proper apparatus for determining their quantity and nature.
To render the success of this experiment certain, it is necessary that the tube EF be made of well annealed and difficultly fusible glass, and that it be coated with a lute composed of clay mixed with powdered stone-ware; besides which, it must be supported about its middle by means of an iron bar passed through the furnace, lest it should soften and bend during the experiment. A tube of China-ware, or porcellain, would answer better than one of glass for this experiment, were it not difficult to procure one so entirely free from pores as to prevent the passage of air or of vapours.
When things are thus arranged, a fire is lighted in the furnace EFCD, which is supported of such a strength as to keep the tube EF red hot, but not to make it melt; and, at the same time, such a fire is kept up in the furnace VVXX, as to keep the water in the retort A continually boiling.
In proportion as the water in the retort A is evaporated, it fills the tube EF, and drives out the air it contained by the tube KK; the aqueous gas formed by evaporation is condensed by cooling in the worm SS, and falls, drop by drop, into the tubulated bottle H. Having continued this operation until all the water be evaporated from the retort, and having carefully emptied all the vessels employed, we find that a quantity of water has passed over into the bottle H, exactly equal to what was before contained in the retort A, without any disengagement of gas whatsoever: So that this experiment turns out to be a simple distillation; and the result would have been exactly the same, if the water had been run from one vessel into the other, through the tube EF, without having undergone the intermediate incandescence.
Second Experiment
The apparatus being disposed, as in the former experiment, 28 grs. of charcoal, broken into moderately small parts, and which has previously been exposed for a long time to a red heat in close vessels, are introduced into the tube EF. Every thing else is managed as in the preceding experiment.
The water contained in the retort A is distilled, as in the former experiment, and, being condensed in the worm, falls into the bottle H; but, at the same time, a considerable quantity of gas is disengaged, which, escaping by the tube KK, is received in a convenient apparatus for that purpose. After the operation is finished, we find nothing but a few atoms of ashes remaining in the tube EF; the 28 grs. of charcoal having entirely disappeared.
When the disengaged gasses are carefully examined, they are sound to weigh 113.7 grs.(note 16); these are of two kinds, viz. 144 cubical inches of carbonic acid gas, weighing 100 grs. and 380 cubical inches of a very light gas, weighing only 13.7 grs. which takes fire when in contact with air, by the approach of a lighted body; and, when the water which has passed over into the bottle H is carefully examined, it is found to have lost 85.7 grs. of its weight. Thus, in this experiment, 85.7 grs. of water, joined to 28 grs. of charcoal, have combined in such a way as to form 100 grs. of carbonic acid, and 13.7 grs. of a particular gas capable of being burnt.
I have already shown, that 100 grs. of carbonic acid gas consists of 72 grs. of oxygen, combined with 28 grs. of charcoal; hence the 28 grs. of charcoal placed in the glass tube have acquired 72 grs. of oxygen from the water; and it follows, that 85.7 grs. of water are composed of 72 grs. of oxygen, combined with 13.7 grs. of a gas susceptible of combustion. We shall see presently that this gas cannot possibly have been disengaged from the charcoal, and must, consequently, have been produced from the water.
I have suppressed some circumstances in the above account of this experiment, which would only have complicated and obscured its results in the minds of the reader. For instance, the inflammable gas dissolves a very small part of the charcoal, by which means its weight is somewhat augmented, and that of the carbonic gas proportionally diminished. Altho' the alteration produced by this circumstance is very inconsiderable; yet I have thought it necessary to determine its effects by rigid calculation, and to report, as above, the results of the experiment in its simplified state, as if this circumstance had not happened. At any rate, should any doubts remain respecting the consequences I have drawn from this experiment, they will be fully dissipated by the following experiments, which I am going to adduce in support of my opinion.
Third Experiment
The apparatus being disposed exactly as in the former experiment, with this difference, that instead of the 28 grs. of charcoal, the tube EF is filled with 274 grs. of soft iron in thin plates, rolled up spirally. The tube is made red hot by means of its furnace, and the water in the retort A is kept constantly boiling till it be all evaporated, and has passed through the tube EF, so as to be condensed in the bottle H.
No carbonic acid gas is disengaged in this experiment, instead of which we obtain 416 cubical inches, or 15 grs. of inflammable gas, thirteen times lighter than atmospheric air. By examining the water which has been distilled, it is found to have lost 100 grs. and the 274 grs. of iron confined in the tube are found to have acquired 85 grs. additional weight, and its magnitude is considerably augmented. The iron is now hardly at all attractable by the magnet; it dissolves in acids without effervescence; and, in short, it is converted into a black oxyd, precisely similar to that which has been burnt in oxygen gas.
In this experiment we have a true oxydation of iron, by means of water, exactly similar to that produced in air by the assistance of heat. One hundred grains of water having been decomposed, 85 grs. of oxygen have combined with the iron, so as to convert it into the state of black oxyd, and 15 grs. of a peculiar inflammable gas are disengaged: From all this it clearly follows, that water is composed of oxygen combined with the base of an inflammable gas, in the respective proportions of 85 parts, by weight of the former, to 15 parts of the latter.
Thus water, besides the oxygen, which is one of its elements in common with many other substances, contains another element as its constituent base or radical, and for which we must find an appropriate term. None that we could think of seemed better adapted than the word hydrogen, which signifies the generative principle of water, from υδορ aqua, and γεινομας gignor (note 17). We call the combination of this element with caloric hydrogen gas; and the term hydrogen expresses the base of that gas, or the radical of water.
This experiment furnishes us with a new combustible body, or, in other words, a body which has so much affinity with oxygen as to draw it from its connection with caloric, and to decompose air or oxygen gas. This combustible body has itself so great affinity with caloric, that, unless when engaged in a combination with some other body, it always subsists in the aëriform or gasseous state, in the usual temperature and pressure of our atmosphere. In this state of gas it is about 1/13 of the weight of an equal bulk of atmospheric air; it is not absorbed by water, though it is capable of holding a small quantity of that fluid in solution, and it is incapable of being used for respiration.
As the property this gas possesses, in common with all other combustible bodies, is nothing more than the power of decomposing air, and carrying off its oxygen from the caloric with which it was combined, it is easily understood that it cannot burn, unless in contact with air or oxygen gas. Hence, when we set fire to a bottle full of this gas, it burns gently, first at the neck of the bottle, and then in the inside of it, in proportion as the external air gets in: This combustion is slow and successive, and only takes place at the surface of contact between the two gasses. It is quite different when the two gasses are mixed before they are set on fire: If, for instance, after having introduced one part of oxygen gas into a narrow mouthed bottle, we fill it up with two parts of hydrogen gas, and bring a lighted taper, or other burning body, to the mouth of the bottle, the combustion of the two gasses takes place instantaneously with a violent explosion. This experiment ought only to be made in a bottle of very strong green glass, holding not more than a pint, and wrapped round with twine, otherwise the operator will be exposed to great danger from the rupture of the bottle, of which the fragments will be thrown about with great force.
If all that has been related above, concerning the decomposition of water, be exactly conformable to truth;—if, as I have endeavoured to prove, that substance be really composed of hydrogen, as its proper constituent element, combined with oxygen, it ought to follow, that, by reuniting these two elements together, we should recompose water; and that this actually happens may be judged of by the following experiment.
Fourth Experiment
I took a large cristal baloon, A, Pl. iv. fig. 5. holding about 30 pints, having a large opening, to which was cemented the plate of copper BC, pierced with four holes, in which four tubes terminate. The first tube, H h, is intended to be adapted to an air pump, by which the baloon is to be exhausted of its air. The second tube gg, communicates, by its extremity MM, with a reservoir of oxygen gas, with which the baloon is to be filled. The third tube d D d', communicates, by its extremity d NN, with a reservoir of hydrogen gas. The extremity d' of this tube terminates in a capillary opening, through which the hydrogen gas contained in the reservoir is forced, with a moderate degree of quickness, by the pressure of one or two inches of water. The fourth tube contains a metallic wire GL, having a knob at its extremity L, intended for giving an electrical spark from L to d', on purpose to set fire to the hydrogen gas: This wire is moveable in the tube, that we may be able to separate the knob L from the extremity d' of the tube D d'. The three tubes d D d', gg, and H h, are all provided with stop-cocks.
That the hydrogen gas and oxygen gas may be as much as possible deprived of water, they are made to pass, in their way to the baloon A, through the tubes MM, NN, of about an inch diameter, and filled with salts, which, from their deliquescent nature, greedily attract the moisture of the air: Such are the acetite of potash, and the muriat or nitrat of lime (note 18) . These salts must only be reduced to a coarse powder, lest they run into lumps, and prevent the gasses from geting through their interstices.
We must be provided before hand with a sufficient quantity of oxygen gas, carefully purified from all admixture of carbonic acid, by long contact with a solution of potash (note 19).
We must likewise have a double quantity of hydrogen gas, carefully purified in the same manner by long contact with a solution of potash in water. The best way of obtaining this gas free from mixture is, by decomposing water with very pure soft iron, as directed in Exp. 3. of this chapter.
Having adjusted every thing properly, as above directed, the tube H h is adapted to an air-pump, and the baloon A is exhausted of its air. We next admit the oxygen gas so as to fill the baloon, and then, by means of pressure, as is before mentioned, force a small stream of hydrogen gas through its tube D d', which we immediately set on fire by an electric spark. By means of the above described apparatus, we can continue the mutual combustion of these two gasses for a long time, as we have the power of supplying them to the baloon from their reservoirs, in proportion as they are consumed. I have in another place (note 20) given a description of the apparatus used in this experiment, and have explained the manner of ascertaining the quantities of the gasses consumed with the most scrupulous exactitude.
In proportion to the advancement of the combustion, there is a deposition of water upon the inner surface of the baloon or matrass A: The water gradually increases in quantity, and, gathering into large drops, runs down to the bottom of the vessel. It is easy to ascertain the quantity of water collected, by weighing the baloon both before and after the experiment. Thus we have a twofold verification of our experiment, by ascertaining both the quantities of the gasses employed, and of the water formed by their combustion: These two quantities must be equal to each other. By an operation of this kind, Mr Meusnier and I ascertained that it required 85 parts, by weight, of oxygen, united to 15 parts of hydrogen, to compose 100 parts of water. This experiment, which has not hitherto been published, was made in presence of a numerous committee from the Royal Academy. We exerted the most scrupulous attention to its accuracy; and have reason to believe that the above propositions cannot vary a two hundredth part from absolute truth.
From these experiments, both analytical and synthetic, we may now affirm that we have ascertained, with as much certainty as is possible in physical or chemical subjects, that water is not a simple elementary substance, but is composed of two elements, oxygen and hydrogen; which elements, when existing separately, have so strong affinity for caloric, as only to subsist under the form of gas in the common temperature and pressure of our atmosphere.
This decomposition and recomposition of water is perpetually operating before our eyes, in the temperature of the atmosphere, by means of compound elective attraction. We shall presently see that the phenomena attendant upon vinous fermentation, putrefaction, and even vegetation, are produced, at least in a certain degree, by decomposition of water. It is very extraordinary that this fact should have hitherto been overlooked by natural philosophers and chemists: Indeed, it strongly proves, that, in chemistry, as in moral philosophy, it is extremely difficult to overcome prejudices imbibed in early education, and to search for truth in any other road than the one we have been accustomed to follow.
I shall finish this chapter by an experiment much less demonstrative than those already related, but which has appeared to make more impression than any other upon the minds of many people. When 16 ounces of alkohol are burnt in an apparatus (note 21)properly adapted for collecting all the water disengaged during the combustion, we obtain from 17 to 18 ounces of water. As no substance can furnish a product larger than its original bulk, it follows, that something else has united with the alkohol during its combustion; and I have already shown that this must be oxygen, or the base of air. Thus alkohol contains hydrogen, which is one of the elements of water; and the atmospheric air contains oxygen, which is the other element necessary to the composition of water. This experiment is a new proof that water is a compound substance.
FOOTNOTES
16 In the latter part of this work will be found a particular account of the processes necessary for separating the different kinds of gasses, and for determining their quantities.—A.
17 This expression Hydrogen has been very severely criticised by some, who pretend that it signifies engendered by water, and not that which engenders water. The experiments related in this chapter prove, that, when water is decomposed, hydrogen is produced, and that, when hydrogen is combined with oxygen, water is produced: So that we may say, with equal truth, that water is produced from hydrogen, or hydrogen is produced from water.—A.
18 See the nature of these salts in the second part of this book.—A.
By potash is here meant, pure or caustic alkali, deprived of carbonic acid by means of quick-lime: In general, we may observe here, that all the alkalies and earths must invariably be considered as in their pure or caustic state, unless otherwise expressed.—E. The method of obtaining this pure alkali of potash will be given in the sequel.—A.
20 See the third part of this work.—A.
21 See an account of this apparatus in the third part of this work.—A.
CHAPTER NINE
Of the quantities of Caloric disengaged from different species of Combustion
We have already mentioned, that, when any body is burnt in the center of a hollow sphere of ice and supplied with air at the temperature of zero (32°), the quantity of ice melted from the inside of the sphere becomes a measure of the relative quantities of caloric disengaged. Mr de la Place and I gave a description of the apparatus employed for this kind of experiment in the Memoirs of the Academy for 1780, p. 355; and a description and plate of the same apparatus will be found in the third part of this work. With this apparatus, phosphorus, charcoal, and hydrogen gas, gave the following results:
One pound of phosphorus melted 100 libs. of ice.
One pound of charcoal melted 96 libs. 8 oz.
One pound of hydrogen gas melted 295 libs. 9 oz. 3-1/2 gros.
As a concrete acid is formed by the combustion of phosphorus, it is probable that very little caloric remains in the acid, and, consequently, that the above experiment gives us very nearly the whole quantity of caloric contained in the oxygen gas. Even if we suppose the phosphoric acid to contain a good deal of caloric, yet, as the phosphorus must have contained nearly an equal quantity before combustion, the error must be very small, as it will only consist of the difference between what was contained in the phosphorus before, and in the phosphoric acid after combustion.
I have already shown in Chap. V. that one pound of phosphorus absorbs one pound eight ounces of oxygen during combustion; and since, by the same operation, 100 lib. of ice are melted, it follows, that the quantity of caloric contained in one pound of oxygen gas is capable of melting 66 libs. 10 oz. 5 gros 24 grs. of ice.
One pound of charcoal during combustion melts only 96 libs. 8 oz. of ice, whilst it absorbs 2 libs. 9 oz. 1 gros 10 grs. of oxygen. By the experiment with phosphorus, this quantity of oxygen gas ought to disengage a quantity of caloric sufficient to melt 171 libs. 6 oz. 5 gros of ice; consequently, during this experiment, a quantity of caloric, sufficient to melt 74 libs. 14 oz. 5 gros of ice disappears. Carbonic acid is not, like phosphoric acid, in a concrete state after combustion but in the state of gas, and requires to be united with caloric to enable it to subsist in that state; the quantity of caloric missing in the last experiment is evidently employed for that purpose. When we divide that quantity by the weight of carbonic acid, formed by the combustion of one pound of charcoal, we find that the quantity of caloric necessary for changing one pound of carbonic acid from the concrete to the gasseous state, would be capable of melting 20 libs. 15 oz. 5 gros of ice.
We may make a similar calculation with the combustion of hydrogen gas and the consequent formation of water. During the combustion of one pound of hydrogen gas, 5 libs. 10 oz. 5 gros 24 grs. of oxygen gas are absorbed, and 295 libs. 9 oz. 3-1/2 gros of ice are melted. But 5 libs. 10 oz. 5 gros 24 grs. of oxygen gas, in changing from the aëriform to the solid state, loses, according to the experiment with phosphorus, enough of caloric to have melted 377 libs. 12 oz. 3 gros of ice. There is only disengaged, from the same quantity of oxygen, during its combustion with hydrogen gas, as much caloric as melts 295 libs. 2 oz. 3-1/2 gros; wherefore there remains in the water at Zero (32°), formed, during this experiment, as much caloric as would melt 82 libs. 9 oz. 7-1/2 gros of ice.
Hence, as 6 libs. 10 oz. 5 gros 24 grs. of water are formed from the combustion of one pound of hydrogen gas with 5 libs. 10 oz. 5 gros 24 grs. of oxygen, it follows that, in each pound of water, at the temperature of Zero, (32°), there exists as much caloric as would melt 12 libs. 5 oz. 2 gros 48 grs. of ice, without taking into account the quantity originally contained in the hydrogen gas, which we have been obliged to omit, for want of data to calculate its quantity. From this it appears that water, even in the state of ice, contains a considerable quantity of caloric, and that oxygen, in entering into that combination, retains likewise a good proportion.
From these experiments, we may assume the following results as sufficiently established.
Combustion of Phosphorus
From the combustion of phosphorus, as related in the foregoing experiments, it appears, that one pound of phosphorus requires 1 lib. 8 oz. of oxygen gas for its combustion, and that 2 libs. 8 oz. of concrete phosphoric acid are produced.
The quantity of caloric disengaged by the combustion of one pound of phosphorus, expressed by the number of pounds of ice melted during that operation, is |
100.00000. |
The quantity disengaged from each pound of oxygen, during the combustion of phosphorus, expressed in the same manner, is |
66.66667. |
The quantity disengaged during the formation of one pound of phosphoric acid, |
40.00000. |
The quantity remaining in each pound of phosphoric acid, |
0.00000(A). |
[Note A: We here suppose the phosphoric acid not to contain any caloric, which is not strictly true; but, as I have before observed, the quantity it really contains is probably very small, and we have not given it a value, for want of a sufficient data to go upon.—A.]
Combustion of Charcoal
In the combustion of one pound of charcoal, 2 libs. 9 oz. 1 gros 10 grs. of oxygen gas are absorbed, and 3 libs. 9 oz. 1 gros 10 grs. of carbonic acid gas are formed.
Caloric, disengaged daring the combustion of one pound of charcoal, |
96.50000(A). |
Caloric disengaged during the combustion of charcoal, from each pound of oxygen gas absorbed, |
37.52823. |
Caloric disengaged during the formation of one pound of carbonic acid gas, |
27.02024. |
Caloric retained by each pound of oxygen after the combustion, |
29.13844. |
Caloric necessary for supporting one pound of carbonic acid in the state of gas, |
20.97960. |
[Note A: All these relative quantities of caloric are expressed by the number of pounds of ice, and decimal parts, melted during the several operations.—E.]
Combustion of Hydrogen Gas
In the combustion of one pound of hydrogen gas, 5 libs. 10 oz. 5 gros 24 grs. of oxygen gas are absorbed, and 6 libs. 10 oz. 5 gros 24 grs. of water are formed.
Caloric from each lib. of hydrogen gas, |
295.58950. |
Caloric from each lib. of oxygen gas, |
52.16280. |
Caloric disengaged during the formation of each pound of water, |
44.33840. |
Caloric retained by each lib. of oxygen after combustion with hydrogen, |
14.50386. |
Caloric retained by each lib. of water at the temperature of Zero (32°), |
12.32823. |
Of the Formation of Nitric Acid
When we combine nitrous gas with oxygen gas, so as to form nitric or nitrous acid a degree of heat is produced, which is much less considerable than what is evolved during the other combinations of oxygen; whence it follows that oxygen, when it becomes fixed in nitric acid, retains a great part of the heat which it possessed in the state of gas. It is certainly possible to determine the quantity of caloric which is disengaged during the combination of these two gasses, and consequently to determine what quantity remains after the combination takes place. The first of these quantities might be ascertained, by making the combination of the two gasses in an apparatus surrounded by ice; but, as the quantity of caloric disengaged is very inconsiderable, it would be necessary to operate upon a large quantity of the two gasses in a very troublesome and complicated apparatus. By this consideration, Mr de la Place and I have hitherto been prevented from making the attempt. In the mean time, the place of such an experiment may be supplied by calculations, the results of which cannot be very far from truth.
Mr de la Place and I deflagrated a convenient quantity of nitre and charcoal in an ice apparatus, and found that twelve pounds of ice were melted by the deflagration of one pound of nitre. We shall see, in the sequel, that one pound of nitre is composed, as under, of
Potash |
7 oz. |
6 gros |
51.84 grs. |
= |
4515.84 grs. |
Dry acid |
8 |
1 |
21.16 |
= |
4700.16. |
The above quantity of dry acid is composed of
Oxygen |
6 oz. |
3 gros |
66.34 grs. |
= |
3738.34 grs. |
Azote |
1 |
5 |
25.82 |
= |
961.82. |
By this we find that, during the above deflagration, 2 gros 1-1/3 gr. of charcoal have suffered combustion, alongst with 3738.34 grs. or 6 oz. 3 gros 66.34 grs. of oxygen. Hence, since 12 libs. of ice were melted during the combustion, it follows, that one pound of oxygen burnt in the same manner would have melted 29.58320 libs. of ice. To which the quantity of caloric, retained by a pound of oxygen after combining with charcoal to form carbonic acid gas, being added, which was already ascertained to be capable of melting 29.13844 libs. of ice, we have for the total quantity of caloric remaining in a pound of oxygen, when combined with nitrous gas in the nitric acid 58.72164; which is the number of pounds of ice the caloric remaining in the oxygen in that state is capable of melting.
We have before seen that, in the state of oxygen gas, it contained at least 66.66667; wherefore it follows that, in combining with azote to form nitric acid, it only loses 7.94502. Farther experiments upon this subject are necessary to ascertain how far the results of this calculation may agree with direct fact. This enormous quantity of caloric retained by oxygen in its combination into nitric acid, explains the cause of the great disengagement of caloric during the deflagrations of nitre; or, more strictly speaking, upon all occasions of the decomposition of nitric acid.
Of the Combustion of Wax
Having examined several cases of simple combustion, I mean now to give a few examples of a more complex nature. One pound of wax-taper being allowed to burn slowly in an ice apparatus, melted 133 libs. 2 oz. 5-1/3 gros of ice. According to my experiments in the Memoirs of the Academy for 1784, p. 606, one pound of wax-taper consists of 13 oz. 1 gros 23 grs. of charcoal, and 2 oz. 6 gros 49 grs. of hydrogen.
By the foregoing experiments, the above quantity of charcoal ought to melt |
79.39390 libs. of ice; |
and the hydrogen should melt |
52.37605 |
|
———— |
In all |
131.76995 libs. |
Thus, we see the quantity of caloric disengaged from a burning taper, is pretty exactly conformable to what was obtained by burning separately a quantity of charcoal and hydrogen equal to what enters into its composition. These experiments with the taper were several times repeated, so that I have reason to believe them accurate.
Combustion of Olive Oil
We included a burning lamp, containing a determinate quantity of olive-oil, in the ordinary apparatus, and, when the experiment was finished, we ascertained exactly the quantities of oil consumed, and of ice melted; the result was, that, during the combustion of one pound of olive-oil, 148 libs. 14 oz. 1 gros of ice were melted. By my experiments in the Memoirs of the Academy for 1784, and of which the following Chapter contains an abstract, it appears that one pound of olive-oil consists of 12 oz. 5 gros 5 grs. of charcoal, and 3 oz. 2 gros 67 grs. of hydrogen. By the foregoing experiments, that quantity of charcoal should melt 76.18723 libs. of ice, and the quantity of hydrogen in a pound of the oil should melt 62.15053 libs. The sum of these two gives 138.33776 libs. of ice, which the two constituent elements of the oil would have melted, had they separately suffered combustion, whereas the oil really melted 148.88330 libs. which gives an excess of 10.54554 in the result of the experiment above the calculated result, from data furnished by former experiments.
This difference, which is by no means very considerable, may arise from errors which are unavoidable in experiments of this nature, or it may be owing to the composition of oil not being as yet exactly ascertained. It proves, however, that there is a great agreement between the results of our experiments, respecting the combination of caloric, and those which regard its disengagement.
The following desiderata still remain to be determined, viz. What quantity of caloric is retained by oxygen, after combining with metals, so as to convert them into oxyds; What quantity is contained by hydrogen, in its different states of existence; and to ascertain, with more precision than is hitherto attained, how much caloric is disengaged during the formation of water, as there still remain considerable doubts with respect to our present determination of this point, which can only be removed by farther experiments. We are at present occupied with this inquiry; and, when once these several points are well ascertained, which we hope they will soon be, we shall probably be under the necessity of making considerable corrections upon most of the results of the experiments and calculations in this Chapter. I did not, however, consider this as a sufficient reason for withholding so much as is already known from such as may be inclined to labour upon the same subject. It is difficult, in our endeavours to discover the principles of a new science, to avoid beginning by guess-work; and it is rarely possible to arrive at perfection from the first setting out.
CHAPTER TEN
Of the Combination of Combustible Substances with each other
As combustible substances in general have a great affinity for oxygen, they ought likewise to attract, or tend to combine with each other; quae sunt eadem uni tertio, sunt eadem inter se; and the axiom is found to be true. Almost all the metals, for instance, are capable of uniting with each other, and forming what are called alloys (note 22), in common language. Most of these, like all combinations, are susceptible of several degrees of saturation; the greater number of these alloys are more brittle than the pure metals of which they are composed, especially when the metals alloyed together are considerably different in their degrees of fusibility. To this difference in fusibility, part of the phenomena attendant upon alloyage are owing, particularly the property of iron, called by workmen hotshort. This kind of iron must be considered as an alloy, or mixture of pure iron, which is almost infusible, with a small portion of some other metal which fuses in a much lower degree of heat. So long as this alloy remains cold, and both metals are in the solid state, the mixture is malleable; but, if heated to a sufficient degree to liquify the more fusible metal, the particles of the liquid metal, which are interposed between the particles of the metal remaining solid, must destroy their continuity, and occasion the alloy to become brittle. The alloys of mercury, with the other metals, have usually been called amalgams, and we see no inconvenience from continuing the use of that term.
Sulphur, phosphorus, and charcoal, readily unite with metals. Combinations of sulphur with metals are usually named pyrites. Their combinations with phosphorus and charcoal are either not yet named, or have received new names only of late; so that we have not scrupled to change them according to our principles. The combinations of metal and sulphur we call sulphurets, those with phosphorus phosphurets, and those formed with charcoal carburets. These denominations are extended to all the combinations into which the above three substances enter, without being previously oxygenated. Thus, the combination of sulphur with potash, or fixed vegetable alkali, is called sulphuret of potash; that which it forms with ammoniac, or volatile alkali, is termed sulphuret of ammoniac.
Hydrogen is likewise capable of combining with many combustible substances. In the state of gas, it dissolves charcoal, sulphur, phosphorus, and several metals; we distinguish these combinations by the terms, carbonated hydrogen gas, sulphurated hydrogen gas, and phosphorated hydrogen gas. The sulphurated hydrogen gas was called hepatic air by former chemists, or foetid air from sulphur, by Mr Scheele. The virtues of several mineral waters, and the foetid smell of animal excrements, chiefly arise from the presence of this gas. The phosphorated hydrogen gas is remarkable for the property, discovered by Mr Gengembre, of taking fire spontaneously upon getting into contact with atmospheric air, or, what is better, with oxygen gas. This gas has a strong flavour, resembling that of putrid fish; and it is very probable that the phosphorescent quality of fish, in the state of putrefaction, arises from the escape of this species of gas. When hydrogen and charcoal are combined together, without the intervention of caloric, to bring the hydrogen into the state of gas, they form oil, which is either fixed or volatile, according to the proportions of hydrogen and charcoal in its composition. The chief difference between fixed or fat oils drawn from vegetables by expression, and volatile or essential oils, is, that the former contains an excess of charcoal, which is separated when the oils are heated above the degree of boiling water; whereas the volatile oils, containing a just proportion of these two constituent ingredients, are not liable to be decomposed by that heat, but, uniting with caloric into the gasseous state, pass over in distillation unchanged.
In the Memoirs of the Academy for 1784, p. 593. I gave an account of my experiments upon the composition of oil and alkohol, by the union of hydrogen with charcoal, and of their combination with oxygen. By these experiments, it appears that fixed oils combine with oxygen during combustion, and are thereby converted into water and carbonic acid. By means of calculation applied to the products of these experiments, we find that fixed oil is composed of 21 parts, by weight, of hydrogen combined with 79 parts of charcoal. Perhaps the solid substances of an oily nature, such as wax, contain a proportion of oxygen, to which they owe their state of solidity. I am at present engaged in a series of experiments, which I hope will throw great light upon this subject.
It is worthy of being examined, whether hydrogen in its concrete state, uncombined with caloric, be susceptible of combination with sulphur, phosphorus, and the metals. There is nothing that we know of, which, a priori, should render these combinations impossible; for combustible bodies being in general susceptible of combination with each other, there is no evident reason for hydrogen being an exception to the rule: However, no direct experiment as yet establishes either the possibility or impossibility of this union. Iron and zinc are the most likely, of all the metals, for entering into combination with hydrogen; but, as these have the property of decomposing water, and as it is very difficult to get entirely free from moisture in chemical experiments, it is hardly possible to determine whether the small portions of hydrogen gas, obtained in certain experiments with these metals, were previously combined with the metal in the state of solid hydrogen, or if they were produced by the decomposition of a minute quantity of water. The more care we take to prevent the presence of water in these experiments, the less is the quantity of hydrogen gas procured; and, when very accurate precautions are employed, even that quantity becomes hardly sensible.
However this inquiry may turn out respecting the power of combustible bodies, as sulphur, phosphorus, and metals, to absorb hydrogen, we are certain that they only absorb a very small portion; and that this combination, instead of being essential to their constitution, can only be considered as a foreign substance, which contaminates their purity. It is the province of the advocates (note 23) for this system to prove, by decisive experiments, the real existence of this combined hydrogen, which they have hitherto only done by conjectures founded upon suppositions.
FOOTNOTES
22 This term alloy, which we have from the language of the arts, serves exceedingly well for distinguishing all the combinations or intimate unions of metals with each other, and is adopted in our new nomenclature for that purpose.—A.
23 By these are meant the supporters of the phlogistic theory, who at present consider hydrogen, or the base of inflammable air, as the phlogiston of the celebrated Stahl.—E.
CHAPTER XI
Observations upon Oxyds and Acids with several Bases—and upon the Composition of Animal and Vegetable Substances
We have, in Chap. V. and VIII. examined the products resulting from the combustion of the four simple combustible substances, sulphur, phosphorus, charcoal, and hydrogen: We have shown, in Chap. X that the simple combustible substances are capable of combining with each other into compound combustible substances, and have observed that oils in general, and particularly the fixed vegetable oils, belong to this class, being composed of hydrogen and charcoal. It remains, in this chapter, to treat of the oxygenation of these compound combustible substances, and to show that there exist acids and oxyds having double and triple bases. Nature furnishes us with numerous examples of this kind of combinations, by means of which, chiefly, she is enabled to produce a vast variety of compounds from a very limited number of elements, or simple substances.
It was long ago well known, that, when muriatic and nitric acids were mixed together, a compound acid was formed, having properties quite distinct from those of either of the acids taken separately. This acid was called aqua regia, from its most celebrated property of dissolving gold, called king of metals by the alchymists. Mr Berthollet has distinctly proved that the peculiar properties of this acid arise from the combined action of its two acidifiable bases; and for this reason we have judged it necessary to distinguish it by an appropriate name: That of nitro-muriatic acid appears extremely applicable, from its expressing the nature of the two substances which enter into its composition.
This phenomenon of a double base in one acid, which had formerly been observed only in the nitro-muriatic acid, occurs continually in the vegetable kingdom, in which a simple acid, or one possessed of a single acidifiable base, is very rarely found. Almost all the acids procurable from this kingdom have bases composed of charcoal and hydrogen, or of charcoal, hydrogen, and phosphorus, combined with more or less oxygen. All these bases, whether double or triple, are likewise formed into oxyds, having less oxygen than is necessary to give them the properties of acids. The acids and oxyds from the animal kingdom are still more compound, as their bases generally consist of a combination of charcoal, phosphorus, hydrogen, and azote.
As it is but of late that I have acquired any clear and distinct notions of these substances, I shall not, in this place, enlarge much upon the subject, which I mean to treat of very fully in some memoirs I am preparing to lay before the Academy. Most of my experiments are already performed; but, to be able to give exact reports of the resulting quantities, it is necessary that they be carefully repeated, and increased in number: Wherefore, I shall only give a short enumeration of the vegetable and animal acids and oxyds, and terminate this article by a few reflections upon the composition of vegetable and animal bodies.
Sugar, mucus, under which term we include the different kinds of gums, and starch, are vegetable oxyds, having hydrogen and charcoal combined, in different proportions, as their radicals or bases, and united with oxygen, so as to bring them to the state of oxyds. From the state of oxyds they are capable of being changed into acids by the addition of a fresh quantity of oxygen; and, according to the degrees of oxygenation, and the proportion of hydrogen and charcoal in their bases, they form the several kinds of vegetable acids.
It would be easy to apply the principles of our nomenclature to give names to these vegetable acids and oxyds, by using the names of the two substances which compose their bases: They would thus become hydro-carbonous acids and oxyds: In this method we might indicate which of their elements existed in excess, without circumlocution, after the manner used by Mr Rouelle for naming vegetable extracts: He calls these extracto-resinous when the extractive matter prevails in their composition, and resino-extractive when they contain a larger proportion of resinous matter. Upon that plan, and by varying the terminations according to the formerly established rules of our nomenclature, we have the following denominations: Hydro-carbonous, hydro-carbonic; carbono-hydrous, and carbono-hydric oxyds. And for the acids: Hydro-carbonous, hydro carbonic, oxygenated hydro-carbonic; carbono-hydrous, carbono-hydric, and oxygenated carbono-hydric. It is probable that the above terms would suffice for indicating all the varieties in nature, and that, in proportion as the vegetable acids become well understood, they will naturally arrange themselves under these denominations. But, though we know the elements of which these are composed, we are as yet ignorant of the proportions of these ingredients, and are still far from being able to class them in the above methodical manner; wherefore, we have determined to retain the ancient names provisionally. I am somewhat farther advanced in this inquiry than at the time of publishing our conjunct essay upon chemical nomenclature; yet it would be improper to draw decided consequences from experiments not yet sufficiently precise: Though I acknowledge that this part of chemistry still remains in some degree obscure, I must express my expectations of its being very soon elucidated.
I am still more forcibly necessitated to follow the same plan in naming the acids, which have three or four elements combined in their bases; of these we have a considerable number from the animal kingdom, and some even from vegetable substances. Azote, for instance, joined to hydrogen and charcoal, form the base or radical of the Prussic acid; we have reason to believe that the same happens with the base of the Gallic acid; and almost all the animal acids have their bases composed of azote, phosphorus, hydrogen, and charcoal. Were we to endeavour to express at once all these four component parts of the bases, our nomenclature would undoubtedly be methodical; it would have the property of being clear and determinate; but this assemblage of Greek and Latin substantives and adjectives, which are not yet universally admitted by chemists, would have the appearance of a barbarous language, difficult both to pronounce and to be remembered. Besides, this part of chemistry being still far from that accuracy it must arrive to, the perfection of the science ought certainly to precede that of its language; and we must still, for some time, retain the old names for the animal oxyds and acids. We have only ventured to make a few slight modifications of these names, by changing the termination into ous, when we have reason to suppose the base to be in excess, and into ic, when we suspect the oxygen predominates.
The following are all the vegetable acids hitherto known:
1. Acetous acid. 2. Acetic acid. 3. Oxalic acid. 4. Tartarous acid. 5. Pyro-tartarous acid. 6. Citric acid. 7. Malic acid. 8. Pyro-mucous acid. 9. Pyro-lignous acid. 10. Gallic acid. 11. Benzoic acid. 12. Camphoric acid. 13. Succinic acid.
Though all these acids, as has been already said, are chiefly, and almost entirely, composed of hydrogen, charcoal, and oxygen, yet, properly speaking, they contain neither water carbonic acid nor oil, but only the elements necessary for forming these substances. The power of affinity reciprocally exerted by the hydrogen, charcoal, and oxygen, in these acids, is in a state of equilibrium only capable of existing in the ordinary temperature of the atmosphere; for, when they are heated but a very little above the temperature of boiling water, this equilibrium is destroyed, part of the oxygen and hydrogen unite, and form water; part of the charcoal and hydrogen combine into oil; part of the charcoal and oxygen unite to form carbonic acid; and, lastly, there generally remains a small portion of charcoal, which, being in excess with respect to the other ingredients, is left free. I mean to explain this subject somewhat farther in the succeeding chapter.
The oxyds of the animal kingdom are hitherto less known than those from the vegetable kingdom, and their number is as yet not at all determined. The red part of the blood, lymph, and most of the secretions, are true oxyds, under which point of view it is very important to consider them. We are only acquainted with six animal acids, several of which, it is probable, approach very near each other in their nature, or, at least, differ only in a scarcely sensible degree. I do not include the phosphoric acid amongst these, because it is found in all the kingdoms of nature. They are,
1. Lactic acid. 2. Saccholactic acid. 3. Bombic acid. 4. Formic acid. 5. Sebacic acid. 6. Prussic acid.
The connection between the constituent elements of the animal oxyds and acids is not more permanent than in those from the vegetable kingdom, as a small increase of temperature is sufficient to overturn it. I hope to render this subject more distinct than has been done hitherto in the following chapter.
CHAPTER TWELVE
Of the Decomposition of Vegetable and Animal Substances by the Action of Fire
Before we can thoroughly comprehend what takes place during the decomposition of vegetable substances by fire, we must take into consideration the nature of the elements which enter into their composition, and the different affinities which the particles of these elements exert upon each other, and the affinity which caloric possesses with them. The true constituent elements of vegetables are hydrogen, oxygen, and charcoal: These are common to all vegetables, and no vegetable can exist without them: Such other substances as exist in particular vegetables are only essential to the composition of those in which they are found, and do not belong to vegetables in general.
Of these elements, hydrogen and oxygen have a strong tendency to unite with caloric, and be converted into gas, whilst charcoal is a fixed element, having but little affinity with caloric. On the other hand, oxygen, which, in the usual temperature, tends nearly equally to unite with hydrogen and with charcoal, has a much stronger affinity with charcoal when at the red heat (note 24), and then unites with it to form carbonic acid.
Although we are far from being able to appreciate all these powers of affinity, or to express their proportional energy by numbers, we are certain, that, however variable they may be when considered in relation to the quantity of caloric with which they are combined, they are all nearly in equilibrium in the usual temperature of the atmosphere; hence vegetables neither contain oil (note 25), water, nor carbonic acid, tho' they contain all the elements of these substances. The hydrogen is neither combined with the oxygen nor with the charcoal, and reciprocally; the particles of these three substances form a triple combination, which remains in equilibrium whilst undisturbed by caloric but a very slight increase of temperature is sufficient to overturn this structure of combination.
If the increased temperature to which the vegetable is exposed does not exceed the heat of boiling water, one part of the hydrogen combines with the oxygen, and forms water, the rest of the hydrogen combines with a part of the charcoal, and forms volatile oil, whilst the remainder of the charcoal, being set free from its combination with the other elements, remains fixed in the bottom of the distilling vessel.
When, on the contrary, we employ a red heat, no water is formed, or, at least, any that may have been produced by the first application of the heat is decomposed, the oxygen having a greater affinity with the charcoal at this degree of heat, combines with it to form carbonic acid, and the hydrogen being left free from combination with the other elements, unites with caloric, and escapes in the state of hydrogen gas. In this high temperature, either no oil is formed, or, if any was produced during the lower temperature at the beginning of the experiment, it is decomposed by the action of the red heat. Thus the decomposition of vegetable matter, under a high temperature, is produced by the action of double and triple affinities; while the charcoal attracts the oxygen, on purpose to form carbonic acid, the caloric attracts the hydrogen, and converts it into hydrogen gas.
The distillation of every species of vegetable substance confirms the truth of this theory, if we can give that name to a simple relation of facts. When sugar is submitted to distillation, so long as we only employ a heat but a little below that of boiling water, it only loses its water of cristallization, it still remains sugar, and retains all its properties; but, immediately upon raising the heat only a little above that degree, it becomes blackened, a part of the charcoal separates from the combination, water slightly acidulated passes over accompanied by a little oil, and the charcoal which remains in the retort is nearly a third part of the original weight of the sugar.
The operation of affinities which take place during the decomposition, by fire, of vegetables which contain azote, such as the cruciferous plants, and of those containing phosphorus, is more complicated; but, as these substances only enter into the composition of vegetables in very small quantities, they only, apparently, produce slight changes upon the products of distillation; the phosphorus seems to combine with the charcoal, and, acquiring fixity from that union, remains behind in the retort, while the azote, combining with a part of the hydrogen, forms ammoniac, or volatile alkali.
Animal substances, being composed nearly of the same elements with cruciferous plants, give the same products in distillation, with this difference, that, as they contain a greater quantity of hydrogen and azote, they produce more oil and more ammoniac. I shall only produce one fact as a proof of the exactness with which this theory explains all the phenomena which occur during the distillation of animal substances, which is the rectification and total decomposition of volatile animal oil, commonly known by the name of Dippel's oil. When these oils are procured by a first distillation in a naked fire they are brown, from containing a little charcoal almost in a free state; but they become quite colourless by rectification. Even in this state the charcoal in their composition has so slight a connection with the other elements as to separate by mere exposure to the air. If we put a quantity of this animal oil, well rectified, and consequently clear, limpid, and transparent, into a bell-glass filled with oxygen gas over mercury, in a short time the gas is much diminished, being absorbed by the oil, the oxygen combining with the hydrogen of the oil forms water, which sinks to the bottom, at the same time the charcoal which was combined with the hydrogen being set free, manifests itself by rendering the oil black. Hence the only way of preserving these oils colourless and transparent, is by keeping them in bottles perfectly full and accurately corked, to hinder the contact of air, which always discolours them.
Successive rectifications of this oil furnish another phenomenon confirming our theory. In each distillation a small quantity of charcoal remains in the retort, and a little water is formed by the union of the oxygen contained in the air of the distilling vessels with the hydrogen of the oil. As this takes place in each successive distillation, if we make use of large vessels and a considerable degree of heat, we at last decompose the whole of the oil, and change it entirely into water and charcoal. When we use small vessels, and especially when we employ a slow fire, or degree of heat little above that of boiling water, the total decomposition of these oils, by repeated distillation, is greatly more tedious, and more difficultly accomplished. I shall give a particular detail to the Academy, in a separate memoir, of all my experiments upon the decomposition of oil; but what I have related above may suffice to give just ideas of the composition of animal and vegetable substances, and of their decomposition by the action of fire.
FOOTNOTES
24 Though this term, red heat, does not indicate any absolutely determinate degree of temperature, I shall use it sometimes to express a temperature considerably above that of boiling water.—A.
25 I must be understood here to speak of vegetables reduced to a perfectly dry state; and, with respect to oil, I do not mean that which is procured by expression either in the cold, or in a temperature not exceeding that of boiling water; I only allude to the empyreumatic oil procured by distillation with a naked fire, in a heat superior to the temperature of boiling water; which is the only oil declared to be produced by the operation of fire. What I have published upon this subject in the Memoirs of the Academy for 1786 may be consulted.—A.
CHAPTER THIRTEEN
Of the Decomposition of Vegetable Oxyds by the Vinous Fermentation
The manner in which wine, cyder, mead, and all the liquors formed by the spiritous fermentation, are produced, is well known to every one. The juice of grapes or of apples being expressed, and the latter being diluted with water, they are put into large vats, which are kept in a temperature of at least 10° (54.5°) of the thermometer. A rapid intestine motion, or fermentation, very soon takes place, numerous globules of gas form in the liquid and burst at the surface; when the fermentation is at its height, the quantity of gas disengaged is so great as to make the liquor appear as if boiling violently over a fire. When this gas is carefully gathered, it is found to be carbonic acid perfectly pure, and free from admixture with any other species of air or gas whatever.
When the fermentation is completed, the juice of grapes is changed from being sweet, and full of sugar, into a vinous liquor which no longer contains any sugar, and from which we procure, by distillation, an inflammable liquor, known in commerce under the name of Spirit of Wine. As this liquor is produced by the fermentation of any saccharine matter whatever diluted with water, it must have been contrary to the principles of our nomenclature to call it spirit of wine rather than spirit of cyder, or of fermented sugar; wherefore, we have adopted a more general term, and the Arabic word alkohol seems extremely proper for the purpose.
This operation is one of the most extraordinary in chemistry: We must examine whence proceed the disengaged carbonic acid and the inflammable liquor produced, and in what manner a sweet vegetable oxyd becomes thus converted into two such opposite substances, whereof one is combustible, and the other eminently the contrary. To solve these two questions, it is necessary to be previously acquainted with the analysis of the fermentable substance, and of the products of the fermentation. We may lay it down as an incontestible axiom, that, in all the operations of art and nature, nothing is created; an equal quantity of matter exists both before and after the experiment; the quality and quantity of the elements remain precisely the same; and nothing takes place beyond changes and modifications in the combination of these elements. Upon this principle the whole art of performing chemical experiments depends: We must always suppose an exact equality between the elements of the body examined and those of the products of its analysis.
Hence, since from must of grapes we procure alkohol and carbonic acid, I have an undoubted right to suppose that must consists of carbonic acid and alkohol. From these premises, we have two methods of ascertaining what passes during vinous fermentation, by determining the nature of, and the elements which compose, the fermentable substances, or by accurately examining the produces resulting from fermentation; and it is evident that the knowledge of either of these must lead to accurate conclusions concerning the nature and composition of the other. From these considerations, it became necessary accurately to determine the constituent elements of the fermentable substances; and, for this purpose, I did not make use of the compound juices of fruits, the rigorous analysis of which is perhaps impossible, but made choice of sugar, which is easily analysed, and the nature of which I have already explained. This substance is a true vegetable oxyd with two bases, composed of hydrogen and charcoal brought to the state of an oxyd, by a certain proportion of oxygen; and these three elements are combined in such a way, that a very slight force is sufficient to destroy the equilibrium of their connection. By a long train of experiments, made in various ways, and often repeated, I ascertained that the proportion in which these ingredients exist in sugar, are nearly eight parts of hydrogen, 64 parts of oxygen, and 28 parts of charcoal, all by weight, forming 100 parts of sugar.
Sugar must be mixed with about four times its weight of water, to render it susceptible of fermentation; and even then the equilibrium of its elements would remain undisturbed, without the assistance of some substance, to give a commencement to the fermentation. This is accomplished by means of a little yeast from beer; and, when the fermentation is once excited, it continues of itself until completed. I shall, in another place, give an account of the effects of yeast, and other ferments, upon fermentable substances. I have usually employed 10 libs. of yeast, in the state of paste, for each 100 libs. of sugar, with as much water as is four times the weight of the sugar. I shall give the results of my experiments exactly as they were obtained, preserving even the fractions produced by calculation.
Table One: Materials of Fermentation
|
|
libs. |
oz. |
gros |
grs. |
Water |
|
400 |
0 |
0 |
0 |
Sugar |
|
100 |
0 |
0 |
0 |
Yeast in paste, 10 libs. composed of |
{ Water |
7 |
3 |
6 |
44 |
|
{ Dry yeast |
2 |
12 |
1 |
28 |
|
|
—— |
—— |
—— |
—— |
|
Total |
510 |
Table Two: Constituent Elements of the Materials of Fermentation
|
|
libs. |
oz. |
gros |
grs. |
|
407 libs, 3 oz. 6 gros 44 grs. of water, composed of |
{Hydrogen |
61 |
1 |
2 |
71.40 |
|
{ Oxygen |
346 |
2 |
3 |
44.60 |
|
|
{Hydrogen |
8 |
0 |
0 |
0 |
100 libs. sugar, composed of |
{Oxygen |
64 |
0 |
0 |
0 |
|
{Charcoal |
28 |
0 |
0 |
0 |
|
|
{Hydrogen |
0 |
4 |
5 |
9.30 |
2 libs. 12 oz. 1 gros 28 grs. of dry yeast, composed of |
{Oxygen |
1 |
10 |
2 |
28.76 |
|
{ Charcoal |
0 |
12 |
4 |
59 |
|
{ Azote |
0 |
0 |
5 |
2.94 |
|
|
——— |
——— |
—— |
——— |
|
Total weight |
510 |
0 |
0 |
0 |
Table Three: Recapitulation of these Elements
|
libs. |
oz. |
gros |
grs. |
Oxygen: |
of the water |
340 |
0 |
0 |
0} |
libs. |
oz. |
gros |
grs. |
of the water in the yeast |
6 |
2 |
3 |
44.60} |
411 |
12 |
6 |
1.36 |
of the sugar |
64 |
0 |
0 |
0} |
of the dry yeast |
1 |
10 |
2 |
28.76} |
Hydrogen: |
of the water |
60 |
0 |
0 |
0} |
of the water in the yeast |
1 |
1 |
2 |
71.40} |
69 |
6 |
0 |
8.70 |
of the sugar |
8 |
0 |
0 |
0} |
of the dry yeast |
0 |
4 |
5 |
9.30} |
Charcoal: |
of the sugar |
28 |
0 |
0 |
0} |
of the yeast |
0 |
12 |
4 |
59.00} |
28 |
12 |
4 |
59.00 |
Azote of the yeast |
- |
- |
- |
- } |
0 |
0 |
5 |
2.94 |
|
—— |
——— |
——— |
——— |
|
|
|
|
In all |
510 |
0 |
0 |
0 |
Having thus accurately determined the nature and quantity of the constituent elements of the materials submitted to fermentation, we have next to examine the products resulting from that process. For this purpose, I placed the above 510 libs. of fermentable liquor in a proper (NOTE 26) apparatus, by means of which I could accurately determine the quantity and quality of gas disengaged during the fermentation, and could even weigh every one of the products separately, at any period of the process I judged proper. An hour or two after the substances are mixed together, especially if they are kept in a temperature of from 15° (65.75°) to 18° (72.5°) of the thermometer, the first marks of fermentation commence; the liquor turns thick and frothy, little globules of air are disengaged, which rise and burst at the surface; the quantity of these globules quickly increases, and there is a rapid and abundant production of very pure carbonic acid, accompanied with a scum, which is the yeast separating from the mixture. After some days, less or more according to the degree of heat, the intestine motion and disengagement of gas diminish; but these do not cease entirely, nor is the fermentation completed for a considerable time. During the process, 35 libs. 5 oz. 4 gros 19 grs. of dry carbonic acid are disengaged, which carry alongst with them 13 libs. 14 oz. 5 gros of water. There remains in the vessel 460 libs. 11 oz. 6 gros 53 grs. of vinous liquor, slightly acidulous. This is at first muddy, but clears of itself, and deposits a portion of yeast. When we separately analise all these substances, which is effected by very troublesome processes, we have the results as given in the following Tables. This process, with all the subordinate calculations and analyses, will be detailed at large in the Memoirs of the Academy.
Table Four: Product of Fermentation
|
|
libs. |
oz. |
gros |
grs. |
35 libs. 5 oz. 4 gros 19 grs. of carbonic acid, composed of |
{Oxygen |
25 |
7 |
1 |
34 |
|
{Charcoal |
9 |
14 |
2 |
57 |
|
408 libs. 15 oz. 5 gros 14 grs. of water, composed of |
{Oxygen |
347 |
10 |
0 |
59 |
|
{Hydrogen |
61 |
5 |
4 |
27 |
|
|
{Oxygen, combined with hydrogen |
31 |
6 |
1 |
64 |
57 libs. 11 oz. 1 gros 58 grs. of dry alkohol, composed of |
{Hydrogen, combined with oxygen |
5 |
8 |
5 |
3 |
|
{Hydrogen, combined with charcoal |
4 |
0 |
5 |
0 |
|
{Charcoal, combined with hydrogen |
16 |
11 |
5 |
63 |
|
2 libs. 8 oz. of dry acetous acid, composed of |
{Hydrogen |
0 |
2 |
4 |
0 |
|
{Oxygen |
1 |
11 |
4 |
0 |
|
{Charcoal |
0 |
10 |
0 |
0 |
|
4 libs. 1 oz. 4 gros 3 grs. of residuum of sugar, composed of |
{Hydrogen |
0 |
5 |
1 |
67 |
|
{Oxygen |
2 |
9 |
7 |
27 |
|
{Charcoal |
1 |
2 |
2 |
53 |
|
|
{Hydrogen |
0 |
2 |
2 |
41 |
1 lib. 6 oz. 0 gros 5 grs. of dry yeast, composed of |
{Oxygen |
0 |
13 |
1 |
14 |
|
{ Charcoal |
0 |
6 |
2 |
30 |
|
{Azote |
0 |
0 |
2 |
37 |
|
|
—— |
—— |
—— |
—— |
510 libs. |
Total |
510 |
0 |
0 |
0 |
Table Five: Recapitulation of the Products
|
|
libs. |
oz. |
gros |
grs. |
409 libs. 10 oz. 0 gros 54 grs. of oxygen contained in the |
Water |
347 |
10 |
0 |
59 |
Carbonic acid |
25 |
7 |
1 |
34 |
Alkohol |
31 |
6 |
1 |
64 |
Acetous acid |
1 |
11 |
4 |
0 |
Residuum of sugar |
2 |
9 |
7 |
27 |
Yeast |
0 |
13 |
1 |
14 |
28 libs. 12 oz. 5 gros 59 grs. of charcoal contained in the |
Carbonic acid |
9 |
14 |
2 |
57 |
Alkohol |
16 |
11 |
5 |
63 |
Acetous acid |
0 |
10 |
0 |
0 |
Residuum of sugar |
1 |
2 |
2 |
53 |
Yeast |
0 |
6 |
2 |
30 |
71 libs. 8 oz. 6 gros 66 grs. of hydrogen contained in the |
Water |
61 |
5 |
4 |
27 |
Water of the alkohol |
5 |
8 |
5 |
3 |
Combined with the charcoal of the alko. |
4 |
0 |
5 |
0 |
Acetous acid |
0 |
2 |
4 |
0 |
Residuum of sugar |
0 |
5 |
1 |
67 |
Yeast |
0 |
2 |
2 |
41 |
|
2 gros 37 grs. of azote in the yeast |
0 |
0 |
2 |
37 |
—— |
|
——— |
——— |
——— |
——— |
510 libs. |
Total |
510 |
0 |
0 |
0 |
In these results, I have been exact, even to grains; not that it is possible, in experiments of this nature, to carry our accuracy so far, but as the experiments were made only with a few pounds of sugar, and as, for the sake of comparison, I reduced the results of the actual experiments to the quintal or imaginary hundred pounds, I thought it necessary to leave the fractional parts precisely as produced by calculation.
When we consider the results presented by these tables with attention, it is easy to discover exactly what occurs during fermentation. In the first place, out of the 100 libs. of sugar employed, 4 libs. 1 oz. 4 gros 3 grs. remain, without having suffered decomposition; so that, in reality, we have only operated upon 95 libs. 14 oz. 3 gros 69 grs. of sugar; that is to say, upon 61 libs. 6 oz. 45 grs. of oxygen, 7 libs. 10 oz. 6 gros 6 grs. of hydrogen, and 26 libs. 13 oz. 5 gros 19 grs. of charcoal. By comparing these quantities, we find that they are fully sufficient for forming the whole of the alkohol, carbonic acid and acetous acid produced by the fermentation. It is not, therefore, necessary to suppose that any water has been decomposed during the experiment, unless it be pretended that the oxygen and hydrogen exist in the sugar in that state. On the contrary, I have already made it evident that hydrogen, oxygen and charcoal, the three constituent elements of vegetables, remain in a state of equilibrium or mutual union with each other which subsists so long as this union remains undisturbed by increased temperature, or by some new compound attraction; and that then only these elements combine, two and two together, to form water and carbonic acid.
The effects of the vinous fermentation upon sugar is thus reduced to the mere separation of its elements into two portions; one part is oxygenated at the expence of the other, so as to form carbonic acid, whilst the other part, being deoxygenated in favour of the former, is converted into the combustible substance alkohol; therefore, if it were possible to reunite alkohol and carbonic acid together, we ought to form sugar. It is evident that the charcoal and hydrogen in the alkohol do not exist in the state of oil, they are combined with a portion of oxygen, which renders them miscible with water; wherefore these three substances, oxygen, hydrogen, and charcoal, exist here likewise in a species of equilibrium or reciprocal combination; and in fact, when they are made to pass through a red hot tube of glass or porcelain, this union or equilibrium is destroyed, the elements become combined, two and two, and water and carbonic acid are formed.
I had formally advanced, in my first Memoirs upon the formation of water, that it was decomposed in a great number of chemical experiments, and particularly during the vinous fermentation. I then supposed that water existed ready formed in sugar, though I am now convinced that sugar only contains the elements proper for composing it. It may be readily conceived, that it must have cost me a good deal to abandon my first notions, but by several years reflection, and after a great number of experiments and observations upon vegetable substances, I have fixed my ideas as above.
I shall finish what I have to say upon vinous fermentation, by observing, that it furnishes us with the means of analysing sugar and every vegetable fermentable matter. We may consider the substances submitted to fermentation, and the products resulting from that operation, as forming an algebraic equation; and, by successively supposing each of the elements in this equation unknown, we can calculate their values in succession, and thus verify our experiments by calculation, and our calculation by experiment reciprocally. I have often successfully employed this method for correcting the first results of my experiments, and to direct me in the proper road for repeating them to advantage. I have explained myself at large upon this subject, in a Memoir upon vinous fermentation already presented to the Academy, and which will speedily be published.
FOOTNOTES
(NOTE 26 The above apparatus is described in the Third Part.—A.
CHAPTER FOURTEEN
Of the Putrefactive Fermentation
The phenomena of putrefaction are caused, like those of vinous fermentation, by the operation of very complicated affinities. The constituent elements of the bodies submitted to this process cease to continue in equilibrium in the threefold combination, and form themselves anew into binary combinations (note 27), or compounds, consisting of two elements only; but these are entirely different from the results produced by the vinous fermentation. Instead of one part of the hydrogen remaining united with part of the water and charcoal to form alkohol, as in the vinous fermentation, the whole of the hydrogen is dissipated, during putrefaction, in the form of hydrogen gas, whilst, at the same time, the oxygen and charcoal, uniting with caloric, escape in the form of carbonic acid gas; so that, when the whole process is finished, especially if the materials have been mixed with a sufficient quantity of water, nothing remains but the earth of the vegetable mixed with a small portion of charcoal and iron. Thus putrefaction is nothing more than a complete analysis of vegetable substance, during which the whole of the constituent elements is disengaged in form of gas, except the earth, which remains in the state of mould (note 28).
Such is the result of putrefaction when the substances submitted to it contain only oxygen, hydrogen, charcoal and a little earth. But this case is rare, and these substances putrify imperfectly and with difficulty, and require a considerable time to complete their putrefaction. It is otherwise with substances containing azote, which indeed exists in all animal matters, and even in a considerable number of vegetable substances. This additional element is remarkably favourable to putrefaction; and for this reason animal matter is mixed with vegetable, when the putrefaction of these is wished to be hastened. The whole art of forming composts and dunghills, for the purposes of agriculture, consists in the proper application of this admixture.
The addition of azote to the materials of putrefaction not only accelerates the process, that element likewise combines with part of the hydrogen, and forms a new substance called volatile alkali or ammoniac. The results obtained by analysing animal matters, by different processes, leave no room for doubt with regard to the constituent elements of ammoniac; whenever the azote has been previously separated from these substances, no ammoniac is produced; and in all cases they furnish ammoniac only in proportion to the azote they contain. This composition of ammoniac is likewise fully proved by Mr Berthollet, in the Memoirs of the Academy for 1785, p. 316. where he gives a variety of analytical processes by which ammoniac is decomposed, and its two elements, azote and hydrogen, procured separately.
I already mentioned in Chap. X. that almost all combustible bodies were capable of combining with each other; hydrogen gas possesses this quality in an eminent degree, it dissolves charcoal, sulphur, and phosphorus, producing the compounds named carbonated hydrogen gas, sulphurated hydrogen gas, and phosphorated hydrogen gas. The two latter of these gasses have a peculiarly disagreeable flavour; the sulphurated hydrogen gas has a strong resemblance to the smell of rotten eggs, and the phosphorated smells exactly like putrid fish. Ammoniac has likewise a peculiar odour, not less penetrating, or less disagreeable, than these other gasses. From the mixture of these different flavours proceeds the fetor which accompanies the putrefaction of animal substances. Sometimes ammoniac predominates, which is easily perceived by its sharpness upon the eyes; sometimes, as in feculent matters, the sulphurated gas is most prevalent; and sometimes, as in putrid herrings, the phosphorated hydrogen gas is most abundant.
I long supposed that nothing could derange or interrupt the course of putrefaction; but Mr Fourcroy and Mr Thouret have observed some peculiar phenomena in dead bodies, buried at a certain depth, and preserved to a certain degree, from contact with air; having found the muscular flesh frequently converted into true animal fat. This must have arisen from the disengagement of the azote, naturally contained in the animal substance, by some unknown cause, leaving only the hydrogen and charcoal remaining, which are the elements proper for producing fat or oil. This observation upon the possibility of converting animal substances into fat may some time or other lead to discoveries of great importance to society. The faeces of animals, and other excrementitious matters, are chiefly composed of charcoal and hydrogen, and approach considerably to the nature of oil, of which they furnish a considerable quantity by distillation with a naked fire; but the intolerable foetor which accompanies all the products of these substances prevents our expecting that, at least for a long time, they can be rendered useful in any other way than as manures.
I have only given conjectural approximations in this Chapter upon the composition of animal substances, which is hitherto but imperfectly understood. We know that they are composed of hydrogen, charcoal, azote, phosphorus, and sulphur, all of which, in a state of quintuple combination, are brought to the state of oxyd by a larger or smaller quantity of oxygen. We are, however, still unacquainted with the proportions in which these substances are combined, and must leave it to time to complete this part of chemical analysis, as it has already done with several others.
FOOTNOTES
27 Binary combinations are such as consist of two simple elements combined together. Ternary, and quaternary, consist of three and four elements.—E.
28 In the Third Part will be given the description of an apparatus proper for being used in experiments of this kind.—A.
CHAPTER FIFTEEN
Of the Acetous Fermentation
The acetous fermentation is nothing more than the acidification or oxygenation of wine (note 29), produced in the open air by means of the absorption of oxygen. The resulting acid is the acetous acid, commonly called Vinegar, which is composed of hydrogen and charcoal united together in proportions not yet ascertained, and changed into the acid state by oxygen. As vinegar is an acid, we might conclude from analogy that it contains oxygen, but this is put beyond doubt by direct experiments: In the first place, we cannot change wine into vinegar without the contact of air containing oxygen; secondly, this process is accompanied by a diminution of the volume of the air in which it is carried on from the absorption of its oxygen; and, thirdly, wine may be changed into vinegar by any other means of oxygenation.
Independent of the proofs which these facts furnish of the acetous acid being produced by the oxygenation of wine, an experiment made by Mr Chaptal, Professor of Chemistry at Montpellier, gives us a distinct view of what takes place in this process. He impregnated water with about its own bulk of carbonic acid from fermenting beer, and placed this water in a cellar in vessels communicating with the air, and in a short time the whole was converted into acetous acid. The carbonic acid gas procured from beer vats in fermentation is not perfectly pure, but contains a small quantity of alkohol in solution, wherefore water impregnated with it contains all the materials necessary for forming the acetous acid. The alkohol furnishes hydrogen and one portion of charcoal, the carbonic acid furnishes oxygen and the rest of the charcoal, and the air of the atmosphere furnishes the rest of the oxygen necessary for changing the mixture into acetous acid. From this observation it follows, that nothing but hydrogen is wanting to convert carbonic acid into acetous acid; or more generally, that, by means of hydrogen, and according to the degree of oxygenation, carbonic acid may be changed into all the vegetable acids; and, on the contrary, that, by depriving any of the vegetable acids of their hydrogen, they may be converted into carbonic acid.
Although the principal facts relating to the acetous acid are well known, yet numerical exactitude is still wanting, till furnished by more exact experiments than any hitherto performed; wherefore I shall not enlarge any farther upon the subject. It is sufficiently shown by what has been said, that the constitution of all the vegetable acids and oxyds is exactly conformable to the formation of vinegar; but farther experiments are necessary to teach us the proportion of the constituent elements in all these acids and oxyds. We may easily perceive, however, that this part of chemistry, like all the rest of its divisions, makes rapid progress towards perfection, and that it is already rendered greatly more simple than was formerly believed.
FOOTNOTES
29 The word Wine, in this chapter, is used to signify the liquor produced by the vinous fermentation, whatever vegetable substance may have been used for obtaining it.—E.
CHAPTER SIXTEEN
Of the Formation of Neutral Salts, and of their different Bases
We have just seen that all the oxyds and acids from the animal and vegetable kingdoms are formed by means of a small number of simple elements, or at least of such as have not hitherto been susceptible of decomposition, by means of combination with oxygen; these are azote, sulphur, phosphorus, charcoal, hydrogen, and the muriatic radical (note 30). We may justly admire the simplicity of the means employed by nature to multiply qualities and forms, whether by combining three or four acidifiable bases in different proportions, or by altering the dose of oxygen employed for oxydating or acidifying them. We shall find the means no less simple and diversified, and as abundantly productive of forms and qualities, in the order of bodies we are now about to treat of.
Acidifiable substances, by combining with oxygen, and their consequent conversion into acids, acquire great susceptibility of farther combination; they become capable of uniting with earthy and metallic bodies, by which means neutral salts are formed. Acids may therefore be considered as true salifying principles, and the substances with which they unite to form neutral salts may be called salifiable bases: The nature of the union which these two principles form with each other is meant as the subject of the present chapter.
This view of the acids prevents me from considering them as salts, though they are possessed of many of the principal properties of saline bodies, as solubility in water, &c. I have already observed that they are the result of a first order of combination, being composed of two simple elements, or at least of elements which act as if they were simple, and we may therefore rank them, to use the language of Stahl, in the order of mixts. The neutral salts, on the contrary, are of a secondary order of combination, being formed by the union of two mixts with each other, and may therefore be termed compounds. Hence I shall not arrange the alkalies (note 31) or earths in the class of salts, to which I allot only such as are composed of an oxygenated substance united to a base.
I have already enlarged sufficiently upon the formation of acids in the preceding chapter, and shall not add any thing farther upon that subject; but having as yet given no account of the salifiable bases which are capable of uniting with them to form neutral salts, I mean, in this chapter, to give an account of the nature and origin of each of these bases. These are potash, soda, ammoniac, lime, magnesia, barytes, argill (note 32), and all the metallic bodies.
1. Of Potash
We have already shown, that, when a vegetable substance is submitted to the action of fire in distilling vessels, its component elements, oxygen, hydrogen, and charcoal, which formed a threefold combination in a state of equilibrium, unite, two and two, in obedience to affinities which act conformable to the degree of heat employed. Thus, at the first application of the fire, whenever the heat produced exceeds the temperature of boiling water, part of the oxygen and hydrogen unite to form water; soon after the rest of the hydrogen, and part of the charcoal, combine into oil; and, lastly, when the fire is pushed to the red heat, the oil and water, which had been formed in the early part of the process, become again decomposed, the oxygen and charcoal unite to form carbonic acid, a large quantity of hydrogen gas is set free, and nothing but charcoal remains in the retort.
A great part of these phenomena occur during the combustion of vegetables in the open air; but, in this case, the presence of the air introduces three new substances, the oxygen and azote of the air and caloric, of which two at least produce considerable changes in the results of the operation. In proportion as the hydrogen of the vegetable, or that which results from the decomposition of the water, is forced out in the form of hydrogen gas by the progress of the fire, it is set on fire immediately upon getting in contact with the air, water is again formed, and the greater part of the caloric of the two gasses becoming free produces flame. When all the hydrogen gas is driven out, burnt, and again reduced to water, the remaining charcoal continues to burn, but without flame; it is formed into carbonic acid, which carries off a portion of caloric sufficient to give it the gasseous form; the rest of the caloric, from the oxygen of the air, being set free, produces the heat and light observed during the combustion of charcoal. The whole vegetable is thus reduced into water and carbonic acid, and nothing remains but a small portion of gray earthy matter called ashes, being the only really fixed principles which enter into the constitution of vegetables.
The earth, or rather ashes, which seldom exceeds a twentieth part of the weight of the vegetable, contains a substance of a particular nature, known under the name of fixed vegetable alkali, or potash. To obtain it, water is poured upon the ashes, which dissolves the potash, and leaves the ashes which are insoluble; by afterwards evaporating the water, we obtain the potash in a white concrete form: It is very fixed even in a very high degree of heat. I do not mean here to describe the art of preparing potash, or the method of procuring it in a state of purity, but have entered upon the above detail that I might not use any word not previously explained.
The potash obtained by this process is always less or more saturated with carbonic acid, which is easily accounted for: As the potash does not form, or at least is not set free, but in proportion as the charcoal of the vegetable is converted into carbonic acid by the addition of oxygen, either from the air or the water, it follows, that each particle of potash, at the instant of its formation, or at least of its liberation, is in contact with a particle of carbonic acid, and, as there is a considerable affinity between these two substances, they naturally combine together. Although the carbonic acid has less affinity with potash than any other acid, yet it is difficult to separate the last portions from it. The most usual method of accomplishing this is to dissolve the potash in water; to this solution add two or three times its weight of quick-lime, then filtrate the liquor and evaporate it in close vessels; the saline substance left by the evaporation is potash almost entirely deprived of carbonic acid. In this state it is soluble in an equal weight of water, and even attracts the moisture of the air with great avidity; by this property it furnishes us with an excellent means of rendering air or gas dry by exposing them to its action. In this state it is soluble in alkohol, though not when combined with carbonic acid; and Mr Berthollet employs this property as a method of procuring potash in the state of perfect purity.
All vegetables yield less or more of potash in consequence of combustion, but it is furnished in various degrees of purity by different vegetables; usually, indeed, from all of them it is mixed with different salts from which it is easily separable. We can hardly entertain a doubt that the ashes, or earth which is left by vegetables in combustion, pre-existed in them before they were burnt, forming what may be called the skeleton, or osseous part of the vegetable. But it is quite otherwise with potash; this substance has never yet been procured from vegetables but by means of processes or intermedia capable of furnishing oxygen and azote, such as combustion, or by means of nitric acid; so that it is not yet demonstrated that potash may not be a produce from these operations. I have begun a series of experiments upon this object, and hope soon to be able to give an account of their results.
2. Of Soda
Soda, like potash, is an alkali procured by lixiviation from the ashes of burnt plants, but only from those which grow upon the sea-side, and especially from the herb kali, whence is derived the name alkali, given to this substance by the Arabians. It has some properties in common with potash, and others which are entirely different: In general, these two substances have peculiar characters in their saline combinations which are proper to each, and consequently distinguish them from each other; thus soda, which, as obtained from marine plants, is usually entirely saturated with carbonic acid, does not attract the humidity of the atmosphere like potash, but, on the contrary, desiccates, its cristals effloresce, and are converted into a white powder having all the properties of soda, which it really is, having only lost its water of cristallization.
Hitherto we are not better acquainted with the constituent elements of soda than with those of potash, being equally uncertain whether it previously existed ready formed in the vegetable or is a combination of elements effected by combustion. Analogy leads us to suspect that azote is a constituent element of all the alkalies, as is the case with ammoniac; but we have only slight presumptions, unconfirmed by any decisive experiments, respecting the composition of potash and soda.
3. Of Ammoniac
We have, however, very accurate knowledge of the composition of ammoniac, or volatile alkali, as it is called by the old chemists. Mr Berthollet, in the Memoirs of the Academy for 1784, p. 316. has proved by analysis, that 1000 parts of this substance consist of about 807 parts of azote combined with 193 parts of hydrogen.
Ammoniac is chiefly procurable from animal substances by distillation, during which process the azote and hydrogen necessary to its formation unite in proper proportions; it is not, however, procured pure by this process, being mixed with oil and water, and mostly saturated with carbonic acid. To separate these substances it is first combined with an acid, the muriatic for instance, and then disengaged from that combination by the addition of lime or potash. When ammoniac is thus produced in its greatest degree of purity it can only exist under the gasseous form, at least in the usual temperature of the atmosphere, it has an excessively penetrating smell, is absorbed in large quantities by water, especially if cold and assisted by compression. Water thus saturated with ammoniac has usually been termed volatile alkaline fluor; we shall call it either simply ammoniac, or liquid ammoniac, and ammoniacal gas when it exists in the aëriform state.
4. Of Lime, Magnesia, Barytes, and Argill
The composition of these four earths is totally unknown, and, until by new discoveries their constituent elements are ascertained, we are certainly authorised to consider them as simple bodies. Art has no share in the production of these earths, as they are all procured ready formed from nature; but, as they have all, especially the three first, great tendency to combination, they are never found pure. Lime is usually saturated with carbonic acid in the state of chalk, calcarious spars, most of the marbles, &c.; sometimes with sulphuric acid, as in gypsum and plaster stones; at other times with fluoric acid forming vitreous or fluor spars; and, lastly, it is found in the waters of the sea, and of saline springs, combined with muriatic acid. Of all the salifiable bases it is the most universally spread through nature.
Magnesia is found in mineral waters, for the most part combined with sulphuric acid; it is likewise abundant in sea-water, united with muriatic acid; and it exists in a great number of stones of different kinds.
Barytes is much less common than the three preceding earths; it is found in the mineral kingdom, combined with sulphuric acid, forming heavy spars, and sometimes, though rarely, united to carbonic acid.
Argill, or the base of alum, having less tendency to combination than the other earths, is often found in the state of argill, uncombined with any acid. It is chiefly procurable from clays, of which, properly speaking, it is the base, or chief ingredient.
5. Of Metallic Bodies
The metals, except gold, and sometimes silver, are rarely found in the mineral kingdom in their metallic state, being usually less or more saturated with oxygen, or combined with sulphur, arsenic, sulphuric acid, muriatic acid, carbonic acid, or phosphoric acid. Metallurgy, or the docimastic art, teaches the means of separating them from these foreign matters; and for this purpose we refer to such chemical books as treat upon these operations.
We are probably only acquainted as yet with a part of the metallic substances existing in nature, as all those which have a stronger affinity to oxygen, than charcoal possesses, are incapable of being reduced to the metallic state, and, consequently, being only presented to our observation under the form of oxyds, are confounded with earths. It is extremely probable that barytes, which we have just now arranged with earths, is in this situation; for in many experiments it exhibits properties nearly approaching to those of metallic bodies. It is even possible that all the substances we call earths may be only metallic oxyds, irreducible by any hitherto known process.
Those metallic bodies we are at present acquainted with, and which we can reduce to the metallic or reguline state, are the following seventeen:
1. Arsenic. 2. Molybdena. 3. Tungstein. 4. Manganese. 5. Nickel. 6. Cobalt. 7. Bismuth. 8. Antimony. 9. Zinc. 10. Iron. 11. Tin. 12. Lead. 13. Copper. 14. Mercury. 15. Silver. 16. Platina. 17. Gold.
I only mean to consider these as salifiable bases, without entering at all upon the consideration of their properties in the arts, and for the uses of society. In these points of view each metal would require a complete treatise, which would lead me far beyond the bounds I have prescribed for this work.
FOOTNOTES
30 I have not ventured to omit this element, as here enumerated with the other principles of animal and vegetable substances, though it is not at all taken notice of in the preceding chapters as entering into the composition of these bodies.—E.
31 Perhaps my thus rejecting the alkalies from the class of salts may be considered as a capital defect in the method I have adopted, and I am ready to admit the charge; but this inconvenience is compensated by so many advantages, that I could not think it of sufficient consequence to make me alter my plan.—A.
32 Called Alumine by Mr Lavoisier; but as Argill has been in a manner naturalized to the language for this substance by Mr Kirwan, I have ventured to use it in preference.—E.
CHAPTER SEVENTEEN
Continuation of the Observations upon Salifiable Bases, and the Formation of Neutral Salts
It is necessary to remark, that earths and alkalies unite with acids to form neutral salts without the intervention of any medium, whereas metallic substances are incapable of forming this combination without being previously less or more oxygenated; strictly speaking, therefore, metals are not soluble in acids, but only metallic oxyds. Hence, when we put a metal into an acid for solution, it is necessary, in the first place, that it become oxygenated, either by attracting oxygen from the acid or from the water; or, in other words, that a metal cannot be dissolved in an acid unless the oxygen, either of the acid, or of the water mixed with it, has a stronger affinity to the metal than to the hydrogen or the acidifiable base; or, what amounts to the same thing, that no metallic solution can take place without a previous decomposition of the water, or the acid in which it is made. The explanation of the principal phenomena of metallic solution depends entirely upon this simple observation, which was overlooked even by the illustrious Bergman.
The first and most striking of these is the effervescence, or, to speak less equivocally, the disengagement of gas which takes place during the solution; in the solutions made in nitric acid this effervescence is produced by the disengagement of nitrous gas; in solutions with sulphuric acid it is either sulphurous acid gas or hydrogen gas, according as the oxydation of the metal happens to be made at the expence of the sulphuric acid or of the water. As both nitric acid and water are composed of elements which, when separate, can only exist in the gasseous form, at least in the common temperature of the atmosphere, it is evident that, whenever either of these is deprived of its oxygen, the remaining element must instantly expand and assume the state of gas; the effervescence is occasioned by this sudden conversion from the liquid to the gasseous state. The same decomposition, and consequent formation of gas, takes place when solutions of metals are made in sulphuric acid: In general, especially by the humid way, metals do not attract all the oxygen it contains; they therefore reduce it, not into sulphur, but into sulphurous acid, and as this acid can only exist as gas in the usual temperature, it is disengaged, and occasions effervescence.
The second phenomenon is, that, when the metals have been previously oxydated, they all dissolve in acids without effervescence: This is easily explained; because, not having now any occasion for combining with oxygen, they neither decompose the acid nor the water by which, in the former case, the effervescence is occasioned.
A third phenomenon, which requires particular consideration, is, that none of the metals produce effervescence by solution in oxygenated muriatic acid. During this process the metal, in the first place, carries off the excess of oxygen from the oxygenated muriatic acid, by which it becomes oxydated, and reduces the acid to the state of ordinary muriatic acid. In this case there is no production of gas, not that the muriatic acid does not tend to exist in the gasseous state in the common temperature, which it does equally with the acids formerly mentioned, but because this acid, which otherwise would expand into gas, finds more water combined with the oxygenated muriatic acid than is necessary to retain it in the liquid form; hence it does not disengage like the sulphurous acid, but remains, and quietly dissolves and combines with the metallic oxyd previously formed from its superabundant oxygen.
The fourth phenomenon is, that metals are absolutely insoluble in such acids as have their bases joined to oxygen by a stronger affinity than these metals are capable of exerting upon that acidifying principle. Hence silver, mercury, and lead, in their metallic states, are insoluble in muriatic acid, but, when previously oxydated, they become readily soluble without effervescence.
From these phenomena it appears that oxygen is the bond of union between metals and acids; and from this we are led to suppose that oxygen is contained in all substances which have a strong affinity with acids: Hence it is very probable the four eminently salifiable earths contain oxygen, and their capability of uniting with acids is produced by the intermediation of that element. What I have formerly noticed relative to these earths is considerably strengthened by the above considerations, viz. that they may very possibly be metallic oxyds, with which oxygen has a stronger affinity than with charcoal, and consequently not reducible by any known means.
All the acids hitherto known are enumerated in the following table, the first column of which contains the names of the acids according to the new nomenclature, and in the second column are placed the bases or radicals of these acids, with observations.
Names of the Acids. |
Names of the Bases, with Observations. |
|
1. Sulphurous |
}Sulphur. |
2. Sulphuric |
} |
|
3. Phosphorous |
}Phosphorus. |
4. Phosphoric |
} |
|
5. Muriatic |
}Muriatic radical or base, hitherto unknown. |
6. Oxygenated muriatic |
} |
|
7. Nitrous |
} |
8. Nitric |
}Azote. |
9. Oxygenated nitric |
} |
|
10. Carbonic |
Charcoal |
|
|
}The bases or radicals of all these acids |
11. Acetous |
}seem to be formed by a combination |
12. Acetic |
}of charcoal and hydrogen; |
13. Oxalic |
}and the only difference seems to be |
14. Tartarous |
}owing to the different proportions in |
15. Pyro-tartarous |
}which these elements combine to form |
16. Citric |
}their bases, and to the different doses |
17. Malic |
}of oxygen in their acidification. A |
18. Pyro-lignous |
}connected series of accurate experiments |
19. Pyro-mucous |
}is still wanted upon this subject. |
|
20. Gallic |
}Our knowledge of the bases of |
21. Prussic |
}these acids is hitherto imperfect; we |
22. Benzoic |
}only know that they contain hydrogen |
23. Succinic |
}and charcoal as principal elements, |
24. Camphoric |
}and that the prussic acid contains |
25. Lactic |
}azote. |
26. Saccholactic |
} |
|
27. Bombic |
}The base of these and all acids |
28. Formic |
}procured from animal substances seems |
29. Sebacic |
}to consist of charcoal, hydrogen, |
|
}phosphorous, and azote. |
|
30. Boracic |
}The bases of these two are hitherto |
31. Fluoric |
}entirely unknown. |
|
32. Antimonic |
Antimony. |
33. Argentic |
Silver. |
34. Arseniac(A) |
Arsenic. |
|
35. Bismuthic |
Bismuth. |
36. Cobaltic |
Cobalt. |
37. Cupric |
Copper. |
38. Stannic |
Tin. |
39. Ferric |
Iron. |
40. Manganic |
Manganese. |
41. Mercuric(B) |
Mercury. |
42. Molybdic |
Molybdena. |
43. Nickolic |
Nickel. |
44. Auric |
Gold. |
45. Platinic |
Platina. |
46. Plumbic |
Lead. |
47. Tungstic |
Tungstein. |
48. Zincic |
Zinc. |
[Note A: This term swerves a little from the rule in making the name of this acid terminate in ac instead of ic. The base and acid are distinguished in French by arsenic and arsenique; but, having chosen the English termination ic to translate the French ique, I was obliged to use this small deviation.—E.]
[Note B: Mr Lavoisier has hydrargirique; but mercurius being used for the base or metal, the name of the acid, as above, is equally regular, and less harsh.—E.]
In this list, which contains 48 acids, I have enumerated 17 metallic acids hitherto very imperfectly known, but upon which Mr Berthollet is about to publish a very important work. It cannot be pretended that all the acids which exist in nature, or rather all the acidifiable bases, are yet discovered; but, on the other hand, there are considerable grounds for supposing that a more accurate investigation than has hitherto been attempted will diminish the number of the vegetable acids, by showing that several of these, at present considered as distinct acids, are only modifications of others. All that can be done in the present state of our knowledge is, to give a view of chemistry as it really is, and to establish fundamental principles, by which such bodies as may be discovered in future may receive names, in conformity with one uniform system.
The known salifiable bases, or substances capable of being converted into neutral salts by union with acids, amount to 24; viz. 3 alkalies, 4 earths, and 17 metallic substances; so that, in the present state of chemical knowledge, the whole possible number of neutral salts amounts to 1152 (note 33). This number is upon the supposition that the metallic acids are capable of dissolving other metals, which is a new branch of chemistry not hitherto investigated, upon which depends all the metallic combinations named vitreous. There is reason to believe that many of these supposable saline combinations are not capable of being formed, which must greatly reduce the real number of neutral salts producible by nature and art. Even if we suppose the real number to amount only to five or six hundred species of possible neutral salts, it is evident that, were we to distinguish them, after the manner of the ancients, either by the names of their first discoverers, or by terms derived from the substances from which they are procured, we should at last have such a confusion of arbitrary designations, as no memory could possibly retain. This method might be tolerable in the early ages of chemistry, or even till within these twenty years, when only about thirty species of salts were known; but, in the present times, when the number is augmenting daily, when every new acid gives us 24 or 48 new salts, according as it is capable of one or two degrees of oxygenation, a new method is certainly necessary. The method we have adopted, drawn from the nomenclature of the acids, is perfectly analogical, and, following nature in the simplicity of her operations, gives a natural and easy nomenclature applicable to every possible neutral salt.
In giving names to the different acids, we express the common property by the generical term acid, and distinguish each species by the name of its peculiar acidifiable base. Hence the acids formed by the oxygenation of sulphur, phosphorus, charcoal, &c. are called sulphuric acid, phosphoric acid, carbonic acid, &c. We thought it likewise proper to indicate the different degrees of saturation with oxygen, by different terminations of the same specific names. Hence we distinguish between sulphurous and sulphuric, and between phosphorous and phosphoric acids, &c.
By applying these principles to the nomenclature of neutral salts, we give a common term to all the neutral salts arising from the combination of one acid, and distinguish the species by adding the name of the salifiable base. Thus, all the neutral salts having sulphuric acid in their composition are named sulphats; those formed by the phosphoric acid, phosphats, &c. The species being distinguished by the names of the salifiable bases gives us sulphat of potash, sulphat of soda, sulphat of ammoniac, sulphat of lime, sulphat of iron, &c. As we are acquainted with 24 salifiable bases, alkaline, earthy, and metallic, we have consequently 24 sulphats, as many phosphats, and so on through all the acids. Sulphur is, however, susceptible of two degrees of oxygenation, the first of which produces sulphurous, and the second, sulphuric acid; and, as the neutral salts produced by these two acids, have different properties, and are in fact different salts, it becomes necessary to distinguish these by peculiar terminations; we have therefore distinguished the neutral salts formed by the acids in the first or lesser degree of oxygenation, by changing the termination at into ite, as sulphites, phosphites (note 34), &c. Thus, oxygenated or acidified sulphur, in its two degrees of oxygenation is capable of forming 48 neutral salts, 24 of which are sulphites, and as many sulphats; which is likewise the case with all the acids capable of two degrees of oxygenation (note 35).
It were both tiresome and unnecessary to follow these denominations through all the varieties of their possible application; it is enough to have given the method of naming the various salts, which, when once well understood, is easily applied to every possible combination. The name of the combustible and acidifiable body being once known, the names of the acid it is capable of forming, and of all the neutral combinations the acid is susceptible of entering into, are most readily remembered. Such as require a more complete illustration of the methods in which the new nomenclature is applied will, in the Second Part of this book, find Tables which contain a full enumeration of all the neutral salts, and, in general, all the possible chemical combinations, so far as is consistent with the present state of our knowledge. To these I shall subjoin short explanations, containing the best and most simple means of procuring the different species of acids, and some account of the general properties of the neutral salts they produce.
I shall not deny, that, to render this work more complete, it would have been necessary to add particular observations upon each species of salt, its solubility in water and alkohol, the proportions of acid and of salifiable base in its composition, the quantity of its water of cristallization, the different degrees of saturation it is susceptible of, and, finally, the degree of force or affinity with which the acid adheres to the base. This immense work has been already begun by Messrs Bergman, Morveau, Kirwan, and other celebrated chemists, but is hitherto only in a moderate state of advancement, even the principles upon which it is founded are not perhaps sufficiently accurate.
These numerous details would have swelled this elementary treatise to much too great a size; besides that, to have gathered the necessary materials, and to have completed all the series of experiments requisite, must have retarded the publication of this book for many years. This is a vast field for employing the zeal and abilities of young chemists, whom I would advise to endeavour rather to do well than to do much, and to ascertain, in the first place, the composition of the acids, before entering upon that of the neutral salts. Every edifice which is intended to resist the ravages of time should be built upon a sure foundation; and, in the present state of chemistry, to attempt discoveries by experiments, either not perfectly exact, or not sufficiently rigorous, will serve only to interrupt its progress, instead of contributing to its advancement.
FOOTNOTES
33 This number excludes all triple salts, or such as contain more than one salifiable base, all the salts whose bases are over or under saturated with acid, and those formed by the nitro-muriatic acid.—E.
34 As all the specific names of the acids in the new nomenclature are adjectives, they would have applied severally to the various salifiable bases, without the invention of other terms, with perfect distinctness. Thus, sulphurous potash, and sulphuric potash, are equally distinct as sulphite of potash, and sulphat of potash; and have the advantage of being more easily retained in the memory, because more naturally arising from the acids themselves, than the arbitrary terminations adopted by Mr Lavoisier.—E.
35 There is yet a third degree of oxygenation of acids, as the oxygenated muriatic and oxygenated nitric acids. The terms applicable to the neutral salts resulting from the union of these acids with salifiable bases is supplied by the Author in the Second Part of this Work. These are formed by prefixing the word oxygenated to the name of the salt produced by the second degree of oxygenation. Thus, oxygenated muriat of potash, oxygenated nitrat of soda, &c.—E.
|